Do you want to publish a course? Click here

Negative Magnetoresistance in Topological Semimetals of Transition-Metal Dipnictides with Nontrivial Z2 Indices

130   0   0.0 ( 0 )
 Added by Yi Zheng
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Negative magnetoresistance (NMR) induced by the Adler-Bell-Jackiw anomaly is regarded as the most prominent quantum signature of Weyl semimetals when electrical field $E$ is collinear with the external magnetic field $B$. In this article, we report universal NMR in nonmagnetic, centrosymmetric transition metal dipnictides MPn$_{2}$ (M=Nb and Ta; Pn=As and Sb), in which the existence of Weyl fermions can be explicitly excluded. Using temperature-dependent magnetoresistance, Hall and thermoelectric coefficients of Nernst and Seebeck effects, we determine that the emergence of the NMR phenomena in MPn$_{2}$ is coincident with a Lifshitz transition, corresponding to the formation of unique electron-hole-electron ($e$-$h$-$e$) pockets along the $I-L-I$ direction. First-principles calculations reveal that, along the $I-L-I$ line, the $d_{xy}$ and $d_{x^{2}-y^{2}}$ orbitals of the transition metal form tilted nodal rings of band crossing well below the Fermi level. Strong spin-orbital coupling gaps all the crossing points and creates the characteristic $e$-$h$-$e$ structure, making MPn$_{2}$ a topological semimetal with $mathbb{Z}_2$ indices of [0;(111)]. By excluding the weak localization contribution of the bulk states, we conclude that the universal NMR in MPn$_{2}$ may have an exotic origin in topological surface states, which appears in pairs with opposite spin-momentum locking on nontrivial surfaces.



rate research

Read More

Electronic flat band systems are a fertile platform to host correlation-induced quantum phenomena such as unconventional superconductivity, magnetism and topological orders. While flat band has been established in geometrically frustrated structures, such as the kagome lattice, flat band-induced correlation effects especially in those multi-orbital bulk systems are rarely seen. Here we report negative magnetoresistance and signature of ferromagnetic fluctuations in a prototypical kagome metal CoSn, which features a flat band in proximity to the Fermi level. We find that the magnetoresistance is dictated by electronic correlations via Fermi level tuning. Combining with first principles and model calculations, we establish flat band-induced correlation effects in a multi-orbital electronic system, which opens new routes to realize unconventional superconducting and topological states in geometrically frustrated metals.
We report a topological semimetal W2As3 with a space group C2/m. Based on the first-principles calculations, band crossings are partially gapped when spin-orbit coupling is included. The Z2 indices at the electron filling are [1;111], characterizing a strong topological insulator and topological surface states. From the magnetotransport measurements, nearly quadratic field dependence of magnetoresistance (MR) (B || [200]) at 3 K indicates an electron-hole compensated compound whose longitudinal MR reaches 115 at 3 K and 15 T. In addition, multiband features are detected from the high-magnetic-field Shubnikov-de Haas (SdH) oscillation, Hall resistivity, and band calculations. A nontrivial pi Berrys phase is obtained, suggesting the topological feature of this material. A two- band model can fit well the conductivity and Hall coefficient. Our experiments manifest that the transport properties of W2As3 are in good agreement with the theoretical calculations.
261 - Zheng Wang , Yupeng Li , Yunhao Lu 2016
We report extremely large positive magnetoresistance of 1.72 million percent in single crystal TaSb$_{2}$ at moderate conditions of 1.5 K and 15 T. The quadratic growth of magnetoresistance (MR $propto,B^{1.96}$) is not saturating up to 15 T, a manifestation of nearly perfect compensation with $<0.1%$ mismatch between electron and hole pockets in this semimetal. The compensation mechanism is confirmed by temperature-dependent MR, Hall and thermoelectric coefficients of Nernst and Seebeck, revealing two pronounced Fermi surface reconstruction processes without spontaneous symmetry breaking, textit{i.e.} Lifshitz transitions, at around 20 K and 60 K, respectively. Using quantum oscillations of magnetoresistance and magnetic susceptibility, supported by density-functional theory calculations, we determined that the main hole Fermi surface of TaSb$_{2}$ forms a unique shoulder structure along the $F-L$ line. The flat band top of this shoulder pocket is just a few meV above the Fermi level, leading to the observed topological phase transition at 20 K when the shoulder pocket disappears. Further increase in temperature pushes the Fermi level to the band top of the main hole pocket, induced the second Lifshitz transition at 60 K when hole pocket vanishes completely.
We report on large negative magnetoresistance observed in ferromagnetic thiospinel compound CuCrZrS$_{4}$. Electrical resistivity increased with decreasing temperature according to the form proportional to $textrm{exp}(T_{0}/T)^{1/2} $, derived from variable range hopping with strong electron-electron interaction. Resistivity under magnetic fields was expressed by the same form with the characteristic temperature T0 decreasing with increasing magnetic field. Magnetoresistance ratio $rho (T,0)/rho(T,H)$ is 1.5 at 100 K for H=90 kOe and increases divergently with decreasing temperature reaching 80 at 16 K. Results of magnetization measurements are also presented. Possible mechanism of the large magnetoresistance is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا