Do you want to publish a course? Click here

Isogeometric analysis of diffusion problems on random surfaces

134   0   0.0 ( 0 )
 Added by Wei Huang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this article, we discuss the numerical solution of diffusion equations on random surfaces within the isogeometric framework. Complex computational geometries, given only by surface triangulations, are recast into the isogeometric context by transforming them into quadrangulations and a subsequent interpolation procedure. Moreover, we describe in detail, how diffusion problems on random surfaces can be modelled and how quantities of interest may be derived. In particular, we propose a low rank approximation algorithm for the high-dimensional space-time correlation of the random solution. Extensive numerical studies are provided to quantify and validate the approach.



rate research

Read More

This work is motivated by the difficulty in assembling the Galerkin matrix when solving Partial Differential Equations (PDEs) with Isogeometric Analysis (IGA) using B-splines of moderate-to-high polynomial degree. To mitigate this problem, we propose a novel methodology named CossIGA (COmpreSSive IsoGeometric Analysis), which combines the IGA principle with CORSING, a recently introduced sparse recovery approach for PDEs based on compressive sensing. CossIGA assembles only a small portion of a suitable IGA Petrov-Galerkin discretization and is effective whenever the PDE solution is sufficiently sparse or compressible, i.e., when most of its coefficients are zero or negligible. The sparsity of the solution is promoted by employing a multilevel dictionary of B-splines as opposed to a basis. Thanks to sparsity and the fact that only a fraction of the full discretization matrix is assembled, the proposed technique has the potential to lead to significant computational savings. We show the effectiveness of CossIGA for the solution of the 2D and 3D Poisson equation over nontrivial geometries by means of an extensive numerical investigation.
A study is presented on the convergence of the computation of coupled advection-diffusion-reaction equations. In the computation, the equations with different coefficients and even types are assigned in two subdomains, and Schwarz iteration is made between the equations when marching from a time level to the next one. The analysis starts with the linear systems resulting from the full discretization of the equations by explicit schemes. Conditions for convergence are derived, and its speedup and the effects of difference in the equations are discussed. Then, it proceeds to an implicit scheme, and a recursive expression for convergence speed is derived. An optimal interface condition for the Schwarz iteration is obtained, and it leads to perfect convergence, that is, convergence within two times of iteration. Furthermore, the methods and analyses are extended to the coupling of the viscous Burgers equations. Numerical experiments indicate that the conclusions, such as the perfect convergence, drawn in the linear situations may remain in the Burgers equations computation.
300 - Xiaobing Feng , Yan Luo , Liet Vo 2021
This paper develops and analyzes a general iterative framework for solving parameter-dependent and random diffusion problems. It is inspired by the multi-modes method of [7,8] and the ensemble method of [19] and extends those methods into a more general and unified framework. The main idea of the framework is to reformulate the underlying problem into another problem with a parameter-independent diffusion coefficient and a parameter-dependent (and solution-dependent) right-hand side, a fixed-point iteration is then employed to compute the solution of the reformulated problem. The main benefit of the proposed approach is that an efficient direct solver and a block Krylov subspace iterative solver can be used at each iteration, allowing to reuse the $LU$ matrix factorization or to do an efficient matrix-matrix multiplication for all parameters, which in turn results in significant computation saving. Convergence and rates of convergence are established for the iterative method both at the variational continuous level and at the finite element discrete level under some structure conditions. Several strategies for establishing reformulations of parameter-dependent and random diffusion problems are proposed and their computational complexity is analyzed. Several 1-D and 2-D numerical experiments are also provided to demonstrate the efficiency of the proposed iterative method and to validate the theoretical convergence results.
We introduce a coupled finite and boundary element formulation for acoustic scattering analysis over thin shell structures. A triangular Loop subdivision surface discretisation is used for both geometry and analysis fields. The Kirchhoff-Love shell equation is discretised with the finite element method and the Helmholtz equation for the acoustic field with the boundary element method. The use of the boundary element formulation allows the elegant handling of infinite domains and precludes the need for volumetric meshing. In the present work the subdivision control meshes for the shell displacements and the acoustic pressures have the same resolution. The corresponding smooth subdivision basis functions have the $C^1$ continuity property required for the Kirchhoff-Love formulation and are highly efficient for the acoustic field computations. We validate the proposed isogeometric formulation through a closed-form solution of acoustic scattering over a thin shell sphere. Furthermore, we demonstrate the ability of the proposed approach to handle complex geometries with arbitrary topology that provides an integrated isogeometric design and analysis workflow for coupled structural-acoustic analysis of shells.
Building on the well-known total-variation (TV), this paper develops a general regularization technique based on nonlinear isotropic diffusion (NID) for inverse problems with piecewise smooth solutions. The novelty of our approach is to be adaptive (we speak of A-NID) i.e. the regularization varies during the iterates in order to incorporate prior information on the edges, deal with the evolution of the reconstruction and circumvent the limitations due to the non-convexity of the proposed functionals. After a detailed analysis of the convergence and well-posedness of the method, this latter is validated by simulations perfomed on computerized tomography (CT).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا