Do you want to publish a course? Click here

Testing isomorphism of central Cayley graphs over almost simple groups in polynomial time

163   0   0.0 ( 0 )
 Added by Ilia Ponomarenko
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

A Cayley graph over a group G is said to be central if its connection set is a normal subset of G. It is proved that for any two central Cayley graphs over explicitly given almost simple groups of order n, the set of all isomorphisms from the first graph onto the second can be found in time poly(n).



rate research

Read More

We construct a polynomial-time algorithm that given a graph $X$ with $4p$ vertices ($p$ is prime), finds (if any) a Cayley representation of $X$ over the group $C_2times C_2times C_p$. This result, together with the known similar result for circulant graphs, shows that recognising and testing isomorphism of Cayley graphs over an abelian group of order $4p$ can be done in polynomial time.
Let ${frak K}$ be a class of combinatorial objects invariant with respect to a given regular cyclic group. It is proved that the isomorphism of any two objects $X,Yin{frak K}$ can be tested in polynomial time in sizes of $X$ and $Y$.
A graph is said to be circular-arc if the vertices can be associated with arcs of a circle so that two vertices are adjacent if and only if the corresponding arcs overlap. It is proved that the isomorphism of circular-arc graphs can be tested by the Weisfeiler-Leman algorithm after individualization of two vertices.
In 2011, Fang et al. in (J. Combin. Theory A 118 (2011) 1039-1051) posed the following problem: Classify non-normal locally primitive Cayley graphs of finite simple groups of valency $d$, where either $dleq 20$ or $d$ is a prime number. The only case for which the complete solution of this problem is known is of $d=3$. Except this, a lot of efforts have been made to attack this problem by considering the following problem: Characterize finite nonabelian simple groups which admit non-normal locally primitive Cayley graphs of certain valency $dgeq4$. Even for this problem, it was only solved for the cases when either $dleq 5$ or $d=7$ and the vertex stabilizer is solvable. In this paper, we make crucial progress towards the above problems by completely solving the second problem for the case when $dgeq 11$ is a prime and the vertex stabilizer is solvable.
We show that any connected Cayley graph $Gamma$ on an Abelian group of order $2n$ and degree $tilde{Omega}(log n)$ has at most $2^{n+1}(1 + o(1))$ independent sets. This bound is tight up to to the $o(1)$ term when $Gamma$ is bipartite. Our proof is based on Sapozhenkos graph container method and uses the Pl{u}nnecke-Rusza-Petridis inequality from additive combinatorics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا