Do you want to publish a course? Click here

Arc-transitive Cayley graphs on nonabelian simple groups with prime valency

182   0   0.0 ( 0 )
 Added by Yan-Quan Feng
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In 2011, Fang et al. in (J. Combin. Theory A 118 (2011) 1039-1051) posed the following problem: Classify non-normal locally primitive Cayley graphs of finite simple groups of valency $d$, where either $dleq 20$ or $d$ is a prime number. The only case for which the complete solution of this problem is known is of $d=3$. Except this, a lot of efforts have been made to attack this problem by considering the following problem: Characterize finite nonabelian simple groups which admit non-normal locally primitive Cayley graphs of certain valency $dgeq4$. Even for this problem, it was only solved for the cases when either $dleq 5$ or $d=7$ and the vertex stabilizer is solvable. In this paper, we make crucial progress towards the above problems by completely solving the second problem for the case when $dgeq 11$ is a prime and the vertex stabilizer is solvable.



rate research

Read More

This paper begins the classification of all edge-primitive 3-arc-transitive graphs by classifying all such graphs where the automorphism group is an almost simple group with socle an alternating or sporadic group, and all such graphs where the automorphism group is an almost simple classical group with a vertex-stabiliser acting faithfully on the set of neighbours.
245 - Jing Jian Li , Zai Ping Lu 2021
A graph $Ga=(V,E)$ is called a Cayley graph of some group $T$ if the automorphism group $Aut(Ga)$ contains a subgroup $T$ which acts on regularly on $V$. If the subgroup $T$ is normal in $Aut(Ga)$ then $Ga$ is called a normal Cayley graph of $T$. Let $r$ be an odd prime. Fang et al. cite{FMW} proved that, with a finite number of exceptions for finite simple group $T$, every connected symmetric Cayley graph of $T$ of valency $r$ is normal. In this paper, employing maximal factorizations of finite almost simple groups, we work out a possible list of those exceptions for $T$.
Given integers $k$ and $m$, we construct a $G$-arc-transitive graph of valency $k$ and an $L$-arc-transitive oriented digraph of out-valency $k$ such that $G$ and $L$ both admit blocks of imprimitivity of size $m$.
A graph is edge-transitive if its automorphism group acts transitively on the edge set. In this paper, we investigate the automorphism groups of edge-transitive graphs of odd order and twice prime valency. Let $Gamma$ be a connected graph of odd order and twice prime valency, and let $G$ be a subgroup of the automorphism group of $Ga$. In the case where $G$ acts transitively on the edges and quasiprimitively on the vertices of $Ga$, we prove that either $G$ is almost simple or $G$ is a primitive group of affine type. If further $G$ is an almost simple primitive group then, with two exceptions, the socle of $G$ acts transitively on the edges of $Gamma$.
A graph is said to be {em vertex-transitive non-Cayley} if its full automorphism group acts transitively on its vertices and contains no subgroups acting regularly on its vertices. In this paper, a complete classification of cubic vertex-transitive non-Cayley graphs of order $12p$, where $p$ is a prime, is given. As a result, there are $11$ sporadic and one infinite family of such graphs, of which the sporadic ones occur when $p=5$, $7$ or $17$, and the infinite family exists if and only if $pequiv1 (mod 4)$, and in this family there is a unique graph for a given order.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا