No Arabic abstract
We study variants of the stable marriage and college admissions models in which the agents are allowed to express weak preferences over the set of agents on the other side of the market and the option of remaining unmatched. For the problems that we address, previous authors have presented polynomial-time algorithms for computing a Pareto-stable matching. In the case of college admissions, these algorithms require the preferences of the colleges over groups of students to satisfy a technical condition related to responsiveness. We design new polynomial-time Pareto-stable algorithms for stable marriage and college admissions that correspond to strategyproof mechanisms. For stable marriage, it is known that no Pareto-stable mechanism is strategyproof for all of the agents; our algorithm provides a mechanism that is strategyproof for the agents on one side of the market. For college admissions, it is known that no Pareto-stable mechanism can be strategyproof for the colleges; our algorithm provides a mechanism that is strategyproof for the students.
We study the variant of the stable marriage problem in which the preferences of the agents are allowed to include indifferences. We present a mechanism for producing Pareto-stable matchings in stable marriage markets with indifferences that is group strategyproof for one side of the market. Our key technique involves modeling the stable marriage market as a generalized assignment game. We also show that our mechanism can be implemented efficiently. These results can be extended to the college admissions problem with indifferences.
We initiate the use of a multi-layer neural network to model two-sided matching and to explore the design space between strategy-proofness and stability. It is well known that both properties cannot be achieved simultaneously but the efficient frontier in this design space is not understood. We show empirically that it is possible to achieve a good compromise between stability and strategy-proofness-substantially better than that achievable through a convex combination of deferred acceptance (stable and strategy-proof for only one side of the market) and randomized serial dictatorship (strategy-proof but not stable).
Two-sided matching platforms provide users with menus of match recommendations. To maximize the number of realized matches between the two sides (referred here as customers and suppliers), the platform must balance the inherent tension between recommending customers more potential suppliers to match with and avoiding potential collisions. We introduce a stylized model to study the above trade-off. The platform offers each customer a menu of suppliers, and customers choose, simultaneously and independently, either a supplier from their menu or to remain unmatched. Suppliers then see the set of customers that have selected them, and choose to either match with one of these customers or to remain unmatched. A match occurs if a customer and a supplier choose each other (in sequence). Agents choices are probabilistic, and proportional to public scores of agents in their menu and a score that is associated with remaining unmatched. The platforms problem is to construct menus for costumers to maximize the number of matches. This problem is shown to be strongly NP-hard via a reduction from 3-partition. We provide an efficient algorithm that achieves a constant-factor approximation to the expected number of matches.
We design novel mechanisms for welfare-maximization in two-sided markets. That is, there are buyers willing to purchase items and sellers holding items initially, both acting rationally and strategically in order to maximize utility. Our mechanisms are designed based on a powerful correspondence between two-sided markets and prophet inequalities. They satisfy individual rationality, dominant-strategy incentive compatibility, budget-balance constraints and give constant-factor approximations to the optimal social welfare. We improve previous results in several settings: Our main focus is on matroid double auctions, where the set of buyers who obtain an item needs to be independent in a matroid. We construct two mechanisms, the first being a $1/3$-approximation of the optimal social welfare satisfying strong budget-balance and requiring the agents to trade in a customized order, the second being a $1/2$-approximation, weakly budget-balanced and able to deal with online arrival determined by an adversary. In addition, we construct constant-factor approximations in two-sided markets when buyers need to fulfill a knapsack constraint. Also, in combinatorial double auctions, where buyers have valuation functions over item bundles instead of being interested in only one item, using similar techniques, we design a mechanism which is a $1/2$-approximation of the optimal social welfare, strongly budget-balanced and can deal with online arrival of agents in an adversarial order.
Many two-sided matching markets, from labor markets to school choice programs, use a clearinghouse based on the applicant-proposing deferred acceptance algorithm, which is well known to be strategy-proof for the applicants. Nonetheless, a growing amount of empirical evidence reveals that applicants misrepresent their preferences when this mechanism is used. This paper shows that no mechanism that implements a stable matching is obviously strategy-proof for any side of the market, a stronger incentive property than strategy-proofness that was introduced by Li (2017). A stable mechanism that is obviously strategy-proof for applicants is introduced for the case in which agents on the other side have acyclical preferences.