We study the variant of the stable marriage problem in which the preferences of the agents are allowed to include indifferences. We present a mechanism for producing Pareto-stable matchings in stable marriage markets with indifferences that is group strategyproof for one side of the market. Our key technique involves modeling the stable marriage market as a generalized assignment game. We also show that our mechanism can be implemented efficiently. These results can be extended to the college admissions problem with indifferences.
We study variants of the stable marriage and college admissions models in which the agents are allowed to express weak preferences over the set of agents on the other side of the market and the option of remaining unmatched. For the problems that we address, previous authors have presented polynomial-time algorithms for computing a Pareto-stable matching. In the case of college admissions, these algorithms require the preferences of the colleges over groups of students to satisfy a technical condition related to responsiveness. We design new polynomial-time Pareto-stable algorithms for stable marriage and college admissions that correspond to strategyproof mechanisms. For stable marriage, it is known that no Pareto-stable mechanism is strategyproof for all of the agents; our algorithm provides a mechanism that is strategyproof for the agents on one side of the market. For college admissions, it is known that no Pareto-stable mechanism can be strategyproof for the colleges; our algorithm provides a mechanism that is strategyproof for the students.
We study the fair division of items to agents supposing that agents can form groups. We thus give natural generalizations of popular concepts such as envy-freeness and Pareto efficiency to groups of fixed sizes. Group envy-freeness requires that no group envies another group. Group Pareto efficiency requires that no group can be made better off without another group be made worse off. We study these new group properties from an axiomatic viewpoint. We thus propose new fairness taxonomies that generalize existing taxonomies. We further study ne
We propose a truthful-in-expectation, $(1-1/e)$-approximation mechanism for a strategic variant of the generalized assignment problem (GAP). In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any singular bin. In the strategic variant of the problem we study, values for assigning items to bins are the private information of bidders and the mechanism should provide bidders with incentives to truthfully report their values. The approximation ratio of the mechanism is a significant improvement over the approximation ratio of the existing truthful mechanism for GAP. The proposed mechanism comprises a novel convex optimization program as the allocation rule as well as an appropriate payment rule. To implement the convex program in polynomial time, we propose a fractional local search algorithm which approximates the optimal solution within an arbitrarily small error leading to an approximately truthful-in-expectation mechanism. The presented algorithm improves upon the existing optimization algorithms for GAP in terms of simplicity and runtime while the approximation ratio closely matches the best approximation ratio given for GAP when all inputs are publicly known.
In this paper, we study a problem of truthful mechanism design for a strategic variant of the generalized assignment problem (GAP) in a both payment-free and prior-free environment. In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any singular bin. In the strategic variant of the problem we study, bins are held by strategic agents, and each agent may hide its compatibility with some items in order to obtain items of higher values. The compatibility between an agent and an item encodes the willingness of the agent to receive the item. Our goal is to maximize total value (sum of agents values, or social welfare) while certifying no agent can benefit from hiding its compatibility with items. The model has applications in auctions with budgeted bidders. For two variants of the problem, namely emph{multiple knapsack problem} in which each item has the same size and value over bins, and emph{density-invariant GAP} in which each item has the same value density over the bins, we propose truthful $4$-approximation algorithms. For the general problem, we propose an $O(ln{(U/L)})$-approximation mechanism where $U$ and $L$ are the upper and lower bounds for value densities of the compatible item-bin pairs.
We initiate the work on maximin share (MMS) fair allocation of m indivisible chores to n agents using only their ordinal preferences, from both algorithmic and mechanism design perspectives. The previous best-known approximation is 2-1/n by Aziz et al. [IJCAI 2017]. We improve this result by giving a simple deterministic 5/3-approximation algorithm that determines an allocation sequence of agents, according to which items are allocated one by one. By a tighter analysis, we show that for n=2,3, our algorithm achieves better approximation ratios, and is actually optimal. We also consider the setting with strategic agents, where agents may misreport their preferences to manipulate the outcome. We first provide a O(log (m/n))-approximation consecutive picking algorithm, and then improve the approximation ratio to O(sqrt{log n}) by a randomized algorithm. Our results uncover some interesting contrasts between the approximation ratios achieved for chores versus goods.