The paper provides a description of the sheaves of Kahler differentials of the arc space and jet schemes of an arbitrary scheme where these sheaves are computed directly from the sheaf of differentials of the given scheme. Several applications on the structure of arc spaces are presented.
We construct a compactification of the moduli spaces of abelian differentials on Riemann surfaces with prescribed zeroes and poles. This compactification, called the moduli space of multi-scale differentials, is a complex orbifold with normal crossing boundary. Locally, our compactification can be described as the normalization of an explicit blowup of the incidence variety compactification, which was defined in [BCGGM18] as the closure of the stratum of abelian differentials in the closure of the Hodge bundle. We also define families of projectivized multi-scale differentials, which gives a proper Deligne-Mumford stack, and our compactification is the orbifold corresponding to it. Moreover, we perform a real oriented blowup of the unprojectivized moduli space of multi-scale differentials such that the $mathrm{SL}_2(mathbb R)$-action in the interior of the moduli space extends continuously to the boundary.
We study the arc space of the Grassmannian from the point of view of the singularities of Schubert varieties. Our main tool is a decomposition of the arc space of the Grassmannian that resembles the Schubert cell decomposition of the Grassmannian itself. Just as the combinatorics of Schubert cells is controlled by partitions, the combinatorics in the arc space is controlled by plane partitions (sometimes also called 3d partitions). A combination of a geometric analysis of the pieces in the decomposition and a combinatorial analysis of plane partitions leads to invariants of the singularities. As an application we reduce the computation of log canonical thresholds of pairs involving Schubert varieties to an easy linear programming problem. We also study the Nash problem for Schubert varieties, showing that the Nash map is always bijective in this case.
We introduce the concept of directed orbifold, namely triples (X, V, D) formed by a directed algebraic or analytic variety (X, V), and a ramification divisor D, where V is a coherent subsheaf of the tangent bundle T X. In this context, we introduce an algebra of orbifold jet differentials and their sections. These jet sections can be seen as algebraic differential operators acting on germs of curves, with meromorphic coefficients, whose poles are supported by D and multiplicities are bounded by the ramification indices of the components of D. We estimate precisely the curvature tensor of the corresponding directed structure V D in the general orbifold case-with a special attention to the compact case D = 0 and to the logarithmic situation where the ramification indices are infinite. Using holomorphic Morse inequalities on the tautological line bundle of the projectivized orbifold Green-Griffiths bundle, we finally obtain effective sufficient conditions for the existence of global orbifold jet differentials.
We give a necessary and sufficient condition for a non-degenerate symmetric 3-differential with nonzero Blaschke curvature on a complex surface to be locally representable as a product of three closed holomorphic 1-forms. We give t
We study the behavior of real-normalized (RN) meromorphic differentials on Riemann surfaces under degeneration. We determine all possible limits of RN differentials in degenerating sequences of smooth curves, and describe the limit in terms of solutions of the corresponding Kirchhoff problem. We further show that the limit of zeroes of RN differentials is the set of zeroes of a twisted meromorphic RN differential, which we explicitly construct. Our main new tool is an explicit solution of the jump problem on Riemann surfaces in plumbing coordinates, by using the Cauchy kernel on the normalization of the nodal curve. Since this kernel does not depend on plumbing coordinates, we are able to approximate the RN differential on a smooth plumbed curve by a collection of meromorphic differentials on the irreducible components of a stable curve, with an explicit bound on the precision of such approximation. This allows us to also study these approximating differentials at suitable scales, so that the limit under degeneration is not identically zero. These methods can be applied more generally to study degenerations of differentials on Riemann surfaces satisfying various conditions.