Do you want to publish a course? Click here

The arc space of the Grassmannian

57   0   0.0 ( 0 )
 Added by Roi Docampo
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We study the arc space of the Grassmannian from the point of view of the singularities of Schubert varieties. Our main tool is a decomposition of the arc space of the Grassmannian that resembles the Schubert cell decomposition of the Grassmannian itself. Just as the combinatorics of Schubert cells is controlled by partitions, the combinatorics in the arc space is controlled by plane partitions (sometimes also called 3d partitions). A combination of a geometric analysis of the pieces in the decomposition and a combinatorial analysis of plane partitions leads to invariants of the singularities. As an application we reduce the computation of log canonical thresholds of pairs involving Schubert varieties to an easy linear programming problem. We also study the Nash problem for Schubert varieties, showing that the Nash map is always bijective in this case.



rate research

Read More

The paper provides a description of the sheaves of Kahler differentials of the arc space and jet schemes of an arbitrary scheme where these sheaves are computed directly from the sheaf of differentials of the given scheme. Several applications on the structure of arc spaces are presented.
A theorem of the first author states that the cotangent bundle of the type $A$ Grassmannian variety can be embedded as an open subset of a smooth Schubert variety in a two-step affine partial flag variety. We extend this result to cotangent bundles of cominuscule generalized Grassmannians of arbitrary Lie type.
We prove that the divisor class group of any open Richardson variety in the Grassmannian is trivial. Our proof uses Nagatas criterion, localizing the coordinate ring at a suitable set of Plucker coordinates. We prove that these Plucker coordinates are prime elements by showing that the subscheme they define is an open subscheme of a positroid variety. Our results hold over any field and over the integers.
Let $G=SL(n, mathbb{C}),$ and $T$ be a maximal torus of $G,$ where $n$ is a positive even integer. In this article, we study the GIT quotients of the Schubert varieties in the Grassmannian $G_{2,n}.$ We prove that the GIT quotients of the Richardson varieties in the minimal dimensional Schubert variety admitting stable points in $G_{2,n}$ are projective spaces. Further, we prove that the GIT quotients of certain Richardson varieties in $G_{2,n}$ are projective toric varieties. Also, we prove that the GIT quotients of the Schubert varieties in $G_{2,n}$ have at most finite set of singular points. Further, we have computed the exact number of singular points of the GIT quotient of $G_{2,n}.$
Tropical geometry and the theory of Newton-Okounkov bodies are two methods which produce toric degenerations of an irreducible complex projective variety. Kaveh-Manon showed that the two are related. We give geometric maps between the Newton-Okounkov bodies corresponding to two adjacent maximal-dimensional prime cones in the tropicalization of $X$. Under a technical condition, we produce a natural algebraic wall-crossing map on the underlying value semigroups (of the corresponding valuations). In the case of the tropical Grassmannian $Gr(2,m)$, we prove that the algebraic wall-crossing map is the restriction of a geometric map. In an Appendix by Nathan Ilten, he explains how the geometric wall-crossing phenomenon can also be derived from the perspective of complexity-one $T$-varieties; Ilten also explains the connection to the combinatorial mutations studied by Akhtar-Coates-Galkin-Kasprzyk.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا