No Arabic abstract
Electron-electron (e-e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e-e scattering. Only recently, sufficiently clean electron systems with transport dominated by e-e collisions have become available, showing behavior characteristic of highly viscous fluids. Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene. Notably, the measured conductance exceeds the maximum conductance possible for free electrons. This anomalous behavior is attributed to collective movement of interacting electrons, which shields individual carriers from momentum loss at sample boundaries. The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behavior for designing graphene-based devices.
The electron-hole plasma in charge-neutral graphene is predicted to realize a quantum critical system whose transport features a universal hydrodynamic description, even at room temperature. This quantum critical Dirac fluid is expected to have a shear viscosity close to a minimum bound, with an inter-particle scattering rate saturating at the Planckian time $hbar/(k_B T)$. While electrical transport measurements at finite carrier density are consistent with hydrodynamic electron flow in graphene, a smoking gun of viscous behavior remains elusive. In this work, we directly image viscous Dirac fluid flow in graphene at room temperature via measurement of the associated stray magnetic field. Nanoscale magnetic imaging is performed using quantum spin magnetometers realized with nitrogen vacancy (NV) centers in diamond. Scanning single-spin and wide-field magnetometry reveals a parabolic Poiseuille profile for electron flow in a graphene channel near the charge neutrality point, establishing the viscous transport of the Dirac fluid. This measurement is in contrast to the conventional uniform flow profile imaged in an Ohmic conductor. Via combined imaging-transport measurements, we obtain viscosity and scattering rates, and observe that these quantities are comparable to the universal values expected at quantum criticality. This finding establishes a nearly-ideal electron fluid in neutral graphene at room temperature. Our results pave the way to study hydrodynamic transport in quantum critical fluids relevant to strongly-correlated electrons in high-$T_c$ superconductors. This work also highlights the capability of quantum spin magnetometers to probe correlated-electronic phenomena at the nanoscale.
A hydrodynamic flow of electrons driven by an oscillating electric field is investigated. It is found that a double-peak profile of the electric current can appear. Such a profile originates from the interplay of viscous and inertial properties of the electron fluid as well as the boundary conditions. The nontrivial profile of the current results in a characteristic stray magnetic field where peaks could also occur in one of the field components. Analytical results are supported by numerical calculations in samples of different geometries such as straight channel, nozzle, and cavity and are found to be qualitatively insensitive to a specific form of the oscillating electric field. In addition, it is shown that nozzle and cavity provide an efficient means to locally enhance or reduce the fluid velocity.
We present a hydrodynamic theory for electron-hole magnetotransport in graphene incorporating carrier-population imbalance, energy, and momentum relaxation processes. We focus on the electric response and find that the carrier and energy imbalance relaxation processes strongly modify the shear viscosity, so that an effective viscosity can be negative in the vicinity of charge neutrality. We predict an emergent eddy flow pattern of swirling currents and explore its manifestation in nonlocal resistivity oscillations in a strip of graphene driven by a source current.
We present magneto-Raman scattering studies of electronic inter Landau level excitations in quasi-neutral graphene samples with different strengths of Coulomb interaction. The band velocity associated with these excitations is found to depend on the dielectric environment, on the index of Landau level involved, and to vary as a function of the magnetic field. This contradicts the single-particle picture of non-interacting massless Dirac electrons, but is accounted for by theory when the effect of electron-electron interaction is taken into account. Raman active, zero-momentum inter Landau level excitations in graphene are sensitive to electron-electron interactions due to the non-applicability of the Kohn theorem in this system, with a clearly non-parabolic dispersion relation.
The flow of charge carriers in materials can, under some circumstances, mimic the flow of viscous fluids. In order to visualize the consequences of such effects, new methodologies must be developed that can probe the quasiparticle flow profile with nm-scale resolution as the geometric parameters of the system are continuously evolved. In this work, scanning tunneling potentiometry (STP) is used to image quasiparticle flow around engineered electrostatic barriers in graphene/hBN heterostructures. Measurements are performed as electrostatic dams - defined by lateral pn-junction barriers - are broken within the graphene sheet, and carriers move through conduction channels with physical widths that vary continuously from pinch-off to um-scale. Local, STP measurements of the electrochemical potential allow for direct characterization of the evolving flow profile, which we compare to finite-element simulations of a Stokesian fluid with varying parameters. Our results reveal distinctly non-Ohmic flow profiles, with charge dipoles forming across barriers due to carrier scattering and accumulation on the upstream side, and depletion downstream. Conductance measurements of individual channels, meanwhile, reveal that at low temperatures the quasiparticle flow is ballistic, but as the temperature is raised there is a Knudsen-to-Gurzhi regime crossover where the fluid becomes viscous and the channel conductance exceeds the ballistic limit set by Sharvin conductance. These results provide a clear illustration of how carrier flow in a Fermi fluid evolves as a function of carrier density, channel width, and temperature. They also demonstrate how STP can be used to extract key parameters of quasiparticle transport, with a spatial resolution that exceeds that of other methods by orders of magnitude.