Do you want to publish a course? Click here

Negative Viscosity and Eddy Flow of Imbalanced Electron-Hole Liquid in Graphene

115   0   0.0 ( 0 )
 Added by Alex Levchenko
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a hydrodynamic theory for electron-hole magnetotransport in graphene incorporating carrier-population imbalance, energy, and momentum relaxation processes. We focus on the electric response and find that the carrier and energy imbalance relaxation processes strongly modify the shear viscosity, so that an effective viscosity can be negative in the vicinity of charge neutrality. We predict an emergent eddy flow pattern of swirling currents and explore its manifestation in nonlocal resistivity oscillations in a strip of graphene driven by a source current.



rate research

Read More

We consider ground state of electron-hole graphene bilayer composed of two independently doped graphene layers when a condensate of spatially separated electron-hole pairs is formed. In the weak coupling regime the pairing affects only conduction band of electron-doped layer and valence band of hole-doped layer, thus the ground state is similar to ordinary BCS condensate. At strong coupling, an ultrarelativistic character of electron dynamics reveals and the bands which are remote from Fermi surfaces (valence band of electron-doped layer and conduction band of hole-doped layer) are also affected by the pairing. The analysis of instability of unpaired state shows that s-wave pairing with band-diagonal condensate structure, described by two gaps, is preferable. A relative phase of the gaps is fixed, however at weak coupling this fixation diminishes allowing gapped and soliton-like excitations. The coupled self-consistent gap equations for these two gaps are solved at zero temperature in the constant-gap approximation and in the approximation of separable potential. It is shown that, if characteristic width of the pairing region is of the order of magnitude of chemical potential, then the value of the gap in the spectrum is not much different from the BCS estimation. However, if the pairing region is wider, then the gap value can be much larger and depends exponentially on its energy width.
Electron-electron (e-e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e-e scattering. Only recently, sufficiently clean electron systems with transport dominated by e-e collisions have become available, showing behavior characteristic of highly viscous fluids. Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene. Notably, the measured conductance exceeds the maximum conductance possible for free electrons. This anomalous behavior is attributed to collective movement of interacting electrons, which shields individual carriers from momentum loss at sample boundaries. The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behavior for designing graphene-based devices.
Electron-hole asymmetry is a fundamental property in solids that can determine the nature of quantum phase transitions and the regime of operation for devices. The observation of electron-hole asymmetry in graphene and recently in the phase diagram of bilayer graphene has spurred interest into whether it stems from disorder or from fundamental interactions such as correlations. Here, we report an effective new way to access electron-hole asymmetry in 2D materials by directly measuring the quasiparticle self-energy in graphene/Boron Nitride field effect devices. As the chemical potential moves from the hole to the electron doped side, we see an increased strength of electronic correlations manifested by an increase in the band velocity and inverse quasiparticle lifetime. These results suggest that electronic correlations play an intrinsic role in driving electron hole asymmetry in graphene and provide a new insight for asymmetries in more strongly correlated materials.
We use electron transport to characterize monolayer graphene - multilayer MoS2 heterostructures. Our samples show ambipolar characteristics and conductivity saturation on the electron branch which signals the onset of MoS2 conduction band population. Surprisingly, the carrier density in graphene decreases with gate bias once MoS2 is populated, demonstrating negative compressibility in MoS2. We are able to interpret our measurements quantitatively by accounting for disorder and using the random phase approximation (RPA) for the exchange and correlation energies of both Dirac and parabolic-band two-dimensional electron gases. This interpretation allows us to extract the energetic offset between the conduction band edge of MoS2 and the Dirac point of graphene.
Fermi gases in two dimensions display a surprising collective behavior originating from the head-on carrier collisions. The head-on processes dominate angular relaxation at not-too-high temperatures $Tll T_F$ owing to the interplay of Pauli blocking and momentum conservation. As a result, a large family of excitations emerges, associated with the odd-parity harmonics of momentum distribution and having exceptionally long lifetimes. This leads to tomographic dynamics: fast 1D spatial diffusion along the unchanging velocity direction accompanied by a slow angular dynamics that gradually randomizes velocity orientation. The tomographic regime features an unusual hierarchy of time scales and scale-dependent transport coefficients with nontrivial fractional scaling dimensions, leading to fractional-power current flow profiles and unusual conductance scaling vs. sample width.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا