Do you want to publish a course? Click here

Landau level spectroscopy of electron-electron interactions in graphene

226   0   0.0 ( 0 )
 Added by Marek Potemski
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present magneto-Raman scattering studies of electronic inter Landau level excitations in quasi-neutral graphene samples with different strengths of Coulomb interaction. The band velocity associated with these excitations is found to depend on the dielectric environment, on the index of Landau level involved, and to vary as a function of the magnetic field. This contradicts the single-particle picture of non-interacting massless Dirac electrons, but is accounted for by theory when the effect of electron-electron interaction is taken into account. Raman active, zero-momentum inter Landau level excitations in graphene are sensitive to electron-electron interactions due to the non-applicability of the Kohn theorem in this system, with a clearly non-parabolic dispersion relation.



rate research

Read More

Graphene in the quantum Hall regime exhibits a multi-component structure due to the electronic spin and chirality degrees of freedom. While the applied field breaks the spin symmetry explicitly, we show that the fate of the chirality SU(2) symmetry is more involved: the leading symmetry-breaking terms differ in origin when the Hamiltonian is projected onto the central (n=0) rather than any of the other Landau levels. Our description at the lattice level leads to a Harper equation; in its continuum limit, the ratio of lattice constant a and magnetic length l_B assumes the role of a small control parameter in different guises. The leading symmetry-breaking terms are direct (n=0) and exchange (n different from 0) terms, which are algebraically small in a/l_B. We comment on the Haldane pseudopotentials for graphene, and evaluate the easy-plane anisotropy of the graphene ferromagnet.
91 - Jinlyu Cao , H.A. Fertig , 2019
We study RKKY interactions for magnetic impurities on graphene in situations where the electronic spectrum is in the form of Landau levels. Two such situations are considered: non-uniformly strained graphene, and graphene in a real magnetic field. RKKY interactions are enhanced by the lowest Landau level, which is shown to form electron states binding with the spin impurities and add a strong non-perturbative contribution to pairwise impurity spin interactions when their separation $R$ no more than the magnetic length. Beyond this interactions are found to fall off as $1/R^3$ due to perturbative effects of the negative energy Landau levels. Based on these results, we develop simple mean-field theories for both systems, taking into account the fact that typically the density of states in the lowest Landau level is much smaller than the density of spin impurities. For the strain field case, we find that the system is formally ferrimagnetic, but with very small net moment due to the relatively low density of impurities binding electrons. The transition temperature is nevertheless enhanced by them. For real fields, the system forms a canted antiferromagnet if the field is not so strong as to pin the impurity spins along the field. The possibility that the system in this latter case supports a Kosterlitz-Thouless transition is discussed.
The effect of electron-electron interaction on the low-temperature conductivity of graphene is investigated experimentally. Unlike in other two-dimensional systems, the electron-electron interaction correction in graphene is sensitive to the details of disorder. A new temperature regime of the interaction correction is observed where quantum interference is suppressed by intra-valley scattering. We determine the value of the interaction parameter, F_0 ~ -0.1, and show that its small value is due to the chiral nature of interacting electrons.
210 - J. Velasco Jr. , Y. Lee , Z. Zhao 2013
Landau level gaps are important parameters for understanding electronic interactions and symmetry-broken processes in bilayer graphene (BLG). Here we present transport spectroscopy measurements of LL gaps in double-gated suspended BLG with high mobilities in the quantum Hall regime. By using bias as a spectroscopic tool, we measure the gap {Delta} for the quantum Hall (QH) state at filling factor { u}={pm}4 and -2. The single-particle gap for { u}=4 scales linearly with magnetic field B and is independent of the out-of-plane electric field E. For the symmetry-broken { u}=-2 state, the measured values of gap are 1.1 meV/T and 0.17 meV/T for singly-gated geometry and dual-gated geometry at E=0, respectively. The difference between the two values arises from the E-dependence of the gap, suggesting that the { u}=-2 state is layer polarized. Our studies provide the first measurements of the gaps of the broken symmetry QH states in BLG with well-controlled E, and establish a robust method that can be implemented for studying similar states in other layered materials.
80 - Y. Zhang 2006
The quantum Hall (QH) effect in two-dimensional (2D) electrons and holes in high quality graphene samples is studied in strong magnetic fields up to 45 T. QH plateaus at filling factors $ u=0,pm 1,pm 4$ are discovered at magnetic fields $B>$20 T, indicating the lifting of the four-fold degeneracy of the previously observed QH states at $ u=pm(|n|+1/2)$, where $n$ is the Landau level index. In particular, the presence of the $ u=0, pm 1$ QH plateaus indicates that the Landau level at the charge neutral Dirac point splits into four sublevels, lifting sublattice and spin degeneracy. The QH effect at $ u=pm 4$ is investigated in tilted magnetic field and can be attributed to lifting of the spin-degeneracy of the $n=1$ Landau level.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا