No Arabic abstract
We present a simple one-dimensional Ising-type spin system on which we define a completely asymmetric Markovian single spin-flip dynamics. We study the system at a very low, yet non-zero, temperature and we show that for empty boundary conditions the Gibbs measure is stationary for such dynamics, while introducing in a single site a $+$ condition the stationary measure changes drastically, with macroscopical effects. We achieve this result defining an absolutely convergent series expansion of the stationary measure around the zero temperature system. Interesting combinatorial identities are involved in the proofs.
We derive general conditions of slip of a fluid on the boundary. Under these conditions the velocity of the fluid on the immovable boundary is a function of the normal and tangential components of the force acting on the surface of the fluid. A problem on stationary flow of an electrorheological fluid in which the terms of slip are specified on one part of the boundary and surface forces are given on the other is formulated and studied. Existence of a solution of this problem is proved by using the methods of penalty functions, monotonicity and compactness. It is shown that the method of penalty functions and the Galerkin approximations can be used for the approximate solution of the problem under consideration.
In this paper we improve the understanding of the cofactor conditions, which are particular conditions of geometric compatibility between austenite and martensite, that are believed to influence reversibility of martensitic transformations. We also introduce a physically motivated metric to measure how closely a material satisfies the cofactor conditions, as the two currently used in the literature can give contradictory results. We introduce a new condition of super-compatibility between martensitic laminates, which potentially reduces hysteresis and enhances reversibility. Finally, we show that this new condition of super-compatibility is very closely satisfied by Zn45Au30Cu25, the first of a class of recently discovered materials, fabricated to closely satisfy the cofactor conditions, and undergoing ultra-reversible martensitic transformation.
We are dealing with boundary conditions for Dirac-type operators, i.e., first order differential operators with matrix-valued coefficients, including in particular physical many-body Dirac operators. We characterize (what we conjecture is) the general form of reflecting boundary conditions (which includes known boundary conditions such as the one of the MIT bag model) and, as our main goal, of interior-boundary conditions (IBCs). IBCs are a new approach to defining UV-regular Hamiltonians for quantum field theories without smearing particles out or discretizing space. For obtaining such Hamiltonians, the method of IBCs provides an alternative to renormalization and has been successfully used so far in non-relativistic models, where it could be applied also in cases in which no renormalization method was known. A natural next question about IBCs is how to set them up for the Dirac equation, and here we take first steps towards the answer. For quantum field theories, the relevant boundary consists of the surfaces in $n$-particle configuration space $mathbb{R}^{3n}$ on which two particles have the same location in $mathbb{R}^3$. While this boundary has codimension 3, we focus here on the more basic situation in which the boundary has codimension 1 in configuration space. We describe specific examples of IBCs for the Dirac equation, we prove for some of these examples that they rigorously define self-adjoint Hamiltonians, and we develop the general form of IBCs for Dirac-type operators.
A recently proposed approach for avoiding the ultraviolet divergence of Hamiltonians with particle creation is based on interior-boundary conditions (IBCs). The approach works well in the non-relativistic case, that is, for the Laplacian operator. Here, we study how the approach can be applied to Dirac operators. While this has been done successfully already in 1 space dimension, and more generally for codimension-1 boundaries, the situation of point sources in 3 dimensions corresponds to a codimension-3 boundary. One would expect that, for such a boundary, Dirac operators do not allow for boundary conditions because they are known not to allow for point interactions in 3d, which also correspond to a boundary condition. And indeed, we confirm this expectation here by proving that there is no self-adjoint operator on (a truncated) Fock space that would correspond to a Dirac operator with an IBC at configurations with a particle at the origin. However, we also present a positive result showing that there are self-adjoint operators with IBC (on the boundary consisting of configurations with a particle at the origin) that are, away from those configurations, given by a Dirac operator plus a sufficiently strong Coulomb potential.
The small polaron, an one-dimensional lattice model of interacting spinless fermions, with generic non-diagonal boundary terms is studied by the off-diagonal Bethe ansatz method. The presence of the Grassmann valued non-diagonal boundary fields gives rise to a typical $U(1)$-symmetry-broken fermionic model. The exact spectra of the Hamiltonian and the associated Bethe ansatz equations are derived by constructing an inhomogeneous $T-Q$ relation.