Do you want to publish a course? Click here

Interior-Boundary Conditions for Many-Body Dirac Operators and Codimension-1 Boundaries

120   0   0.0 ( 0 )
 Added by Roderich Tumulka
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We are dealing with boundary conditions for Dirac-type operators, i.e., first order differential operators with matrix-valued coefficients, including in particular physical many-body Dirac operators. We characterize (what we conjecture is) the general form of reflecting boundary conditions (which includes known boundary conditions such as the one of the MIT bag model) and, as our main goal, of interior-boundary conditions (IBCs). IBCs are a new approach to defining UV-regular Hamiltonians for quantum field theories without smearing particles out or discretizing space. For obtaining such Hamiltonians, the method of IBCs provides an alternative to renormalization and has been successfully used so far in non-relativistic models, where it could be applied also in cases in which no renormalization method was known. A natural next question about IBCs is how to set them up for the Dirac equation, and here we take first steps towards the answer. For quantum field theories, the relevant boundary consists of the surfaces in $n$-particle configuration space $mathbb{R}^{3n}$ on which two particles have the same location in $mathbb{R}^3$. While this boundary has codimension 3, we focus here on the more basic situation in which the boundary has codimension 1 in configuration space. We describe specific examples of IBCs for the Dirac equation, we prove for some of these examples that they rigorously define self-adjoint Hamiltonians, and we develop the general form of IBCs for Dirac-type operators.



rate research

Read More

A recently proposed approach for avoiding the ultraviolet divergence of Hamiltonians with particle creation is based on interior-boundary conditions (IBCs). The approach works well in the non-relativistic case, that is, for the Laplacian operator. Here, we study how the approach can be applied to Dirac operators. While this has been done successfully already in 1 space dimension, and more generally for codimension-1 boundaries, the situation of point sources in 3 dimensions corresponds to a codimension-3 boundary. One would expect that, for such a boundary, Dirac operators do not allow for boundary conditions because they are known not to allow for point interactions in 3d, which also correspond to a boundary condition. And indeed, we confirm this expectation here by proving that there is no self-adjoint operator on (a truncated) Fock space that would correspond to a Dirac operator with an IBC at configurations with a particle at the origin. However, we also present a positive result showing that there are self-adjoint operators with IBC (on the boundary consisting of configurations with a particle at the origin) that are, away from those configurations, given by a Dirac operator plus a sufficiently strong Coulomb potential.
We propose an index for pairs of a unitary map and a clustering state on many-body quantum systems. We require the map to conserve an integer-valued charge and to leave the state, e.g. a gapped ground state, invariant. This index is integer-valued and stable under perturbations. In general, the index measures the charge transport across a fiducial line. We show that it reduces to (i) an index of projections in the case of non-interacting fermions, (ii) the charge density for translational invariant systems, and (iii) the quantum Hall conductance in the two-dimensional setting without any additional symmetry. Example (ii) recovers the Lieb-Schultz-Mattis theorem, and (iii) provides a new and short proof of quantization of Hall conductance in interacting many-body systems.
146 - Thomas Duyckaerts 2008
In this article, we analyze the propagation of Wigner measures of a family of solutions to a system of semi-classical pseudodifferential equations presenting eigenvalues crossings on hypersurfaces. We prove the propagation along classical trajectories under a geometric condition which is satisfied for example as soon as the Hamiltonian vector fields are transverse or tangent at finite order to the crossing set. We derive resolvent estimates for semi-classical Schrodinger operator with matrix-valued potential under a geometric condition of the same type on the crossing set and we analyze examples of degenerate situations where one can prove transfers between the modes.
81 - Georg Junker 2019
The most general Dirac Hamiltonians in $(1+1)$ dimensions are revisited under the requirement to exhibit a supersymmetric structure. It is found that supersymmetry allows either for a scalar or a pseudo-scalar potential. Their spectral properties are shown to be represented by those of the associated non-relativistic Witten model. The general discussion is extended to include the corresponding relativistic and non-relativistic resolvents. As example the well-studied relativistic Dirac oscillator is considered and the associated resolved kernel is found in a closed form expression by utilising the energy-dependent Greens function of the non-relativistic harmonic oscillator. The supersymmetric quasi-classical approximation for the Witten model is extended to the associated relativistic model.
103 - Loic Le Treust 2017
This paper deals with the study of the two-dimensional Dirac operatorwith infinite mass boundary condition in a sector. We investigate the question ofself-adjointness depending on the aperture of the sector: when the sector is convexit is self-adjoint on a usual Sobolev space whereas when the sector is non-convexit has a family of self-adjoint extensions parametrized by a complex number of theunit circle. As a byproduct of this analysis we are able to give self-adjointnessresults on polygones. We also discuss the question of distinguished self-adjointextensions and study basic spectral properties of the operator in the sector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا