No Arabic abstract
A recently proposed approach for avoiding the ultraviolet divergence of Hamiltonians with particle creation is based on interior-boundary conditions (IBCs). The approach works well in the non-relativistic case, that is, for the Laplacian operator. Here, we study how the approach can be applied to Dirac operators. While this has been done successfully already in 1 space dimension, and more generally for codimension-1 boundaries, the situation of point sources in 3 dimensions corresponds to a codimension-3 boundary. One would expect that, for such a boundary, Dirac operators do not allow for boundary conditions because they are known not to allow for point interactions in 3d, which also correspond to a boundary condition. And indeed, we confirm this expectation here by proving that there is no self-adjoint operator on (a truncated) Fock space that would correspond to a Dirac operator with an IBC at configurations with a particle at the origin. However, we also present a positive result showing that there are self-adjoint operators with IBC (on the boundary consisting of configurations with a particle at the origin) that are, away from those configurations, given by a Dirac operator plus a sufficiently strong Coulomb potential.
We are dealing with boundary conditions for Dirac-type operators, i.e., first order differential operators with matrix-valued coefficients, including in particular physical many-body Dirac operators. We characterize (what we conjecture is) the general form of reflecting boundary conditions (which includes known boundary conditions such as the one of the MIT bag model) and, as our main goal, of interior-boundary conditions (IBCs). IBCs are a new approach to defining UV-regular Hamiltonians for quantum field theories without smearing particles out or discretizing space. For obtaining such Hamiltonians, the method of IBCs provides an alternative to renormalization and has been successfully used so far in non-relativistic models, where it could be applied also in cases in which no renormalization method was known. A natural next question about IBCs is how to set them up for the Dirac equation, and here we take first steps towards the answer. For quantum field theories, the relevant boundary consists of the surfaces in $n$-particle configuration space $mathbb{R}^{3n}$ on which two particles have the same location in $mathbb{R}^3$. While this boundary has codimension 3, we focus here on the more basic situation in which the boundary has codimension 1 in configuration space. We describe specific examples of IBCs for the Dirac equation, we prove for some of these examples that they rigorously define self-adjoint Hamiltonians, and we develop the general form of IBCs for Dirac-type operators.
We consider a way of defining quantum Hamiltonians involving particle creation and annihilation based on an interior-boundary condition (IBC) on the wave function, where the wave function is the particle-position representation of a vector in Fock space, and the IBC relates (essentially) the values of the wave function at any two configurations that differ only by the creation of a particle. Here we prove, for a model of particle creation at one or more point sources using the Laplace operator as the free Hamiltonian, that a Hamiltonian can indeed be rigorously defined in this way without the need for any ultraviolet regularization, and that it is self-adjoint. We prove further that introducing an ultraviolet cut-off (thus smearing out particles over a positive radius) and applying a certain known renormalization procedure (taking the limit of removing the cut-off while subtracting a constant that tends to infinity) yields, up to addition of a finite constant, the Hamiltonian defined by the IBC.
We present the fundamental solutions for the spin-1/2 fields propagating in the spacetimes with power type expansion/contraction and the fundamental solution of the Cauchy problem for the Dirac equation. The derivation of these fundamental solutions is based on formulas for the solutions to the generalized Euler-Poisson-Darboux equation, which are obtained by the integral transform approach.
A derivation of the Dirac equation in `3+1 dimensions is presented based on a master equation approach originally developed for the `1+1 problem by McKeon and Ord. The method of derivation presented here suggests a mechanism by which the work of Knuth and Bahrenyi on causal sets may be extended to a derivation of the Dirac equation in the context of an inference problem.
The most general Dirac Hamiltonians in $(1+1)$ dimensions are revisited under the requirement to exhibit a supersymmetric structure. It is found that supersymmetry allows either for a scalar or a pseudo-scalar potential. Their spectral properties are shown to be represented by those of the associated non-relativistic Witten model. The general discussion is extended to include the corresponding relativistic and non-relativistic resolvents. As example the well-studied relativistic Dirac oscillator is considered and the associated resolved kernel is found in a closed form expression by utilising the energy-dependent Greens function of the non-relativistic harmonic oscillator. The supersymmetric quasi-classical approximation for the Witten model is extended to the associated relativistic model.