Do you want to publish a course? Click here

The stability of unity beta equilibria in tokamaks

54   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The plasma beta, ratio of kinetic to magnetic pressure, inside a tokamak should stay below the Troyon limit to avoid major plasma instabilities. However, this paper argues that Troyon limit occurs only when current profiles cannot sustain high beta equilibria. This paper shows that plasmas with peak beta on the order of unity are stable to ideal MHD modes. While the theoretical (ideal-MHD) stability of unity beta equilibrium has been resolved, the experimental existence of high beta equilibria in tokamaks remains an unsolved problem of plasma physics.



rate research

Read More

A comprehensive numerical study has been conducted in order to investigate the stability of beam-driven, sub-cyclotron frequency compressional (CAE) and global (GAE) Alfven Eigenmodes in low aspect ratio plasmas for a wide range of beam parameters. The presence of CAEs and GAEs has previously been linked to anomalous electron temperature profile flattening at high beam power in NSTX experiments, prompting further examination of the conditions for their excitation. Linear simulations are performed with the hybrid MHD-kinetic initial value code HYM in order to capture the general Doppler-shifted cyclotron resonance that drives the modes. Three distinct types of modes are found in simulations -- co-CAEs, cntr-GAEs, and co-GAEs -- with differing spectral and stability properties. The simulations reveal that unstable GAEs are more ubiquitous than unstable CAEs, consistent with experimental observations, as they are excited at lower beam energies and generally have larger growth rates. Local analytic theory is used to explain key features of the simulation results, including the preferential excitation of different modes based on beam injection geometry and the growth rate dependence on the beam injection velocity, critical velocity, and degree of velocity space anisotropy. The background damping rate is inferred from simulations and estimated analytically for relevant sources not present in the simulation model, indicating that co-CAEs are closer to marginal stability than modes driven by the cyclotron resonances.
Barriers have been identified in magnetically confined plasmas reducing the particle transport and improving the confinement. One of them, the primary shearless barriers are associated to extrema of non-monotonic plasma profiles. Previously, we identified these barriers in a model described by a map that allows the integration of charged particles motion in drift waves for a long time scale. In this work, we show how the existence of these robust barriers depends on the fluctuation amplitude and on the electric shear. Moreover, we also find control parameter intervals for which these primary barriers onset and break-up are recurrent. Another noticeable feature, in these transitions, is the appearance of a layer of particle trajectory stickiness after the shearless barrier break-up or before its onset. Besides the mentioned primary barriers, we also observe sequences of secondary shearless barriers, not reported before, created and destroyed by a sequence of bifurcations as the main control parameters, the fluctuation amplitude and electric shear, are varied. Furthermore, in these bifurcations, we also find hitherto unknown double and triple secondary shearless barriers which constitute a noticeable obstacle to the chaotic transport.
The gyrokinetic turbulence code GS2 was used to investigate the effects of plasma beta on linear, collisionless ion temperature gradient (ITG) modes and trapped electron modes (TEM) in National Compact Stellarator Experiment (NCSX) geometry. Plasma beta affects stability in two ways: through the equilibrium and through magnetic fluctuations. The first was studied here by comparing ITG and TEM stability in two NCSX equilibria of differing beta values, revealing that the high beta equilibrium was marginally more stable than the low beta equilibrium in the adiabatic-electron ITG mode case. However, the high beta case had a lower kinetic-electron ITG mode critical gradient. Electrostatic and electromagnetic ITG and TEM mode growth rate dependencies on temperature gradient and density gradient were qualitatively similar. The second beta effect is demonstrated via electromagnetic ITG growth rates dependency on GS2s beta input parameter. A linear benchmark with gyrokinetic codes GENE and GKV-X is also presented.
Gyrokinetic simulations of ion temperature gradient mode and trapped electron mode driven impurity transport in a realistic tokamak geometry are presented and compared with results using simplified geometries. The gyrokinetic results, obtained with the GENE code in both linear and non-linear modes are compared with data and analysis for a dedicated impurity injection discharge at JET. The impact of several factors on heat and particle transport is discussed, lending special focus to tokamak geometry and rotational shear. To this end, results using s-alpha and concentric circular equilibria are compared with results with magnetic geometry from a JET experiment. To further approach experimental conditions, non-linear gyrokinetic simulations are performed with collisions and a carbon background included. The impurity peaking factors, computed by finding local density gradients corresponding to zero particle flux, are discussed. The impurity peaking factors are seen to be reduced by a factor of ~2 in realistic geometry compared with the simplified geometries, due to a reduction of the convective pinch. It is also seen that collisions reduce the peaking factor for low-Z impurities, while increasing it for high charge numbers, which is attributed to a shift in the transport spectra towards higher wavenumbers with the addition of collisions. With the addition of roto-diffusion, an overall reduction of the peaking factors is observed, but this decrease is not sufficient to explain the flat carbon profiles seen at JET.
We study the stability of spatially periodic, nonlinear Vlasov-Poisson equilibria as an eigenproblem in a Fourier-Hermite basis (in the space and velocity variables, respectively) of finite dimension, $N$. When the advection term in Vlasov equation is dominant, the convergence with $N$ of the eigenvalues is rather slow, limiting the applicability of the method. We use the method of spectral deformation introduced in [J. D. Crawford and P. D. Hislop, Ann. Phys. 189, 265 (1989)] to selectively damp the continuum of neutral modes associated with the advection term, thus accelerating convergence. We validate and benchmark the performance of our method by reproducing the kinetic dispersion relation results for linear (spatially homogeneous) equilibria. Finally, we study the stability of a periodic Bernstein-Greene-Kruskal mode with multiple phase space vortices, compare our results with numerical simulations of the Vlasov-Poisson system and show that the initial unstable equilibrium may evolve to different asymptotic states depending on the way it was perturbed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا