No Arabic abstract
We study the stability of spatially periodic, nonlinear Vlasov-Poisson equilibria as an eigenproblem in a Fourier-Hermite basis (in the space and velocity variables, respectively) of finite dimension, $N$. When the advection term in Vlasov equation is dominant, the convergence with $N$ of the eigenvalues is rather slow, limiting the applicability of the method. We use the method of spectral deformation introduced in [J. D. Crawford and P. D. Hislop, Ann. Phys. 189, 265 (1989)] to selectively damp the continuum of neutral modes associated with the advection term, thus accelerating convergence. We validate and benchmark the performance of our method by reproducing the kinetic dispersion relation results for linear (spatially homogeneous) equilibria. Finally, we study the stability of a periodic Bernstein-Greene-Kruskal mode with multiple phase space vortices, compare our results with numerical simulations of the Vlasov-Poisson system and show that the initial unstable equilibrium may evolve to different asymptotic states depending on the way it was perturbed.
We study Landau damping in the 1+1D Vlasov-Poisson system using a Fourier-Hermite spectral representation. We describe the propagation of free energy in phase space using forwards and backwards propagating Hermite modes recently developed for gyrokinetics [Schekochihin et al. (2014)]. The change in the electric field corresponds to the net Hermite flux via a free energy evolution equation. In linear Landau damping, decay in the electric field corresponds to forward propagating Hermite modes; in nonlinear damping, the initial decay is followed by a growth phase characterised by the generation of backwards propagating Hermite modes by the nonlinear term. The free energy content of the backwards propagating modes increases exponentially until balancing that of the forward propagating modes. Thereafter there is no systematic net Hermite flux, so the electric field cannot decay and the nonlinearity effectively suppresses Landau damping. These simulations are performed using the fully-spectral 5D gyrokinetics code SpectroGK [Parker et al. 2014], modified to solve the 1+1D Vlasov-Poisson system. This captures Landau damping via an iterated Lenard-Bernstein collision operator or via Hou-Li filtering in velocity space. Therefore the code is applicable even in regimes where phase-mixing and filamentation are dominant.
Turbulence at kinetic scales is an unresolved and ubiquitous phenomenon that characterizes both space and laboratory plasmas. Recently, new theories, {it in-situ} spacecraft observations and numerical simulations suggest a novel scenario for turbulence, characterized by a so-called phase space cascade -- the formation of fine structures, both in physical and velocity space. This new concept is here extended by directly taking into account the role of inter-particle collisions, modeled through the nonlinear Landau operator or the simplified Dougherty operator. The characteristic times, associated with inter-particle correlations, are derived in the above cases. The implications of introducing collisions on the phase space cascade are finally discussed.
We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations [Zocco & Schekochihin, Phys. Plasmas 18, 102309 (2011)] (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., Astrophys. J. Suppl. 182:310 (2009)]. Two main applications of these equations are magnetised (Alfvenic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge-Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, including a detailed analysis of 2D and 3D Orszag-Tang-type decaying turbulence, both in fluid and kinetic regimes.
We develop a general stability theory for equilibrium points of Poisson dynamical systems and relative equilibria of Hamiltonian systems with symmetries, including several generalisations of the Energy-Casimir and Energy-Momentum methods. Using a topological generalisation of Lyapunovs result that an extremal critical point of a conserved quantity is stable, we show that a Poisson equilibrium is stable if it is an isolated point in the intersection of a level set of a conserved function with a subset of the phase space that is related to the non-Hausdorff nature of the symplectic leaf space at that point. This criterion is applied to generalise the Energy-Momentum method to Hamiltonian systems which are invariant under non-compact symmetry groups for which the coadjoint orbit space is not Hausdorff. We also show that a $G$-stable relative equilibrium satisfies the stronger condition of being $A$-stable, where $A$ is a specific group-theoretically defined subset of $G$ which contains the momentum isotropy subgroup of the relative equilibrium.
The NASA Magnetospheric Multiscale mission has made in situ diffusion region and kinetic-scale resolution measurements of asymmetric magnetic reconnection for the first time, in the Earths magnetopause. The principal theoretical tool currently used to model collisionless asymmetric reconnection is particle-in-cell simulations. Many particle-in-cell simulations of asymmetric collisionless reconnection start from an asymmetric Harris-type magnetic field but with distribution functions that are not exact equilibrium solutions of the Vlasov equation. We present new and exact equilibrium solutions of the Vlasov-Maxwell system that are self-consistent with one-dimensional asymmetric current sheets, with an asymmetric Harris-type magnetic field profile, plus a constant nonzero guide field. The distribution functions can be represented as a combination of four shifted Maxwellian distribution functions. This equilibrium describes a magnetic field configuration with more freedom than the previously known exact solution and has different bulk flow properties.