Do you want to publish a course? Click here

Direct characterization of a nonlinear photonic circuits wave function with laser light

63   0   0.0 ( 0 )
 Added by Mirko Lobino Dr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Integrated photonics is a leading platform for quantum technologies including nonclassical state generation cite{Vergyris:2016-35975:SRP, Solntsev:2014-31007:PRX, Silverstone:2014-104:NPHOT, Solntsev:2016:RPH}, demonstration of quantum computational complexity cite{Lamitral_NJP2016} and secure quantum communications cite{Zhang:2014-130501:PRL}. As photonic circuits grow in complexity, full quantum tomography becomes impractical, and therefore an efficient method for their characterization cite{Lobino:2008-563:SCI, Rahimi-Keshari:2011-13006:NJP} is essential. Here we propose and demonstrate a fast, reliable method for reconstructing the two-photon state produced by an arbitrary quadratically nonlinear optical circuit. By establishing a rigorous correspondence between the generated quantum state and classical sum-frequency generation measurements from laser light, we overcome the limitations of previous approaches for lossy multimode devices cite{Liscidini:2013-193602:PRL, Helt:2015-1460:OL}. We applied this protocol to a multi-channel nonlinear waveguide network, and measured a 99.28$pm$0.31% fidelity between classical and quantum characterization. This technique enables fast and precise evaluation of nonlinear quantum photonic networks, a crucial step towards complex, large-scale, device production.



rate research

Read More

Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended to the quantum world. Strikingly, valley-contrasting physics in topological photonic structures contributes to valley-related edge states, their unidirectional coupling, and even valley-dependent wave-division in topological junctions. Here, we design and fabricate nanophotonic topological harpoon-shaped beam splitters (HSBSs) based on $120$-deg-bending interfaces and demonstrate the first on-chip valley-dependent quantum information process. Two-photon quantum interference, namely, HongOu-Mandel (HOM) interference with a high visibility of $0.956 pm 0.006$, is realized with our 50/50 HSBS, which is constructed by two topologically distinct domain walls. Cascading this kind of HSBS together, we also demonstrate a simple quantum photonic circuit and generation of a path-entangled state. Our work shows that the photonic valley state can be used in quantum information processing, and it is possible to realize more complex quantum circuits with valley-dependent photonic topological insulators, which provides a novel method for on-chip quantum information processing.
Inspired by the classical phenomenon of random walk, the concept of quantum walk has emerged recently as a powerful platform for the dynamical simulation of complex quantum systems, entanglement production and universal quantum computation. Such a wide perspective motivates a renewing search for efficient, scalable and stable implementations of this quantum process. Photonic approaches have hitherto mainly focused on multi-path schemes, requiring interferometric stability and a number of optical elements that scales quadratically with the number of steps. Here we report the experimental realization of a quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous indistinguishable photons. The whole process develops in a single light beam, with no need of interferometers, and requires optical resources scaling linearly with the number of steps. Our demonstration introduces a novel versatile photonic platform for implementing quantum simulations, based on exploiting the transverse modes of a single light beam as quantum degrees of freedom.
Following the simple observation that the interconnection of a set of quantum optical input-output devices can be specified using structural mode VHSIC Hardware Description Language (VHDL), we demonstrate a computer-aided schematic capture workflow for modeling and simulating multi-component photonic circuits. We describe an algorithm for parsing circuit descriptions to derive quantum equations of motion, illustrate our approach using simple examples based on linear and cavity-nonlinear optical components, and demonstrate a computational approach to hierarchical model reduction.
Laser-frequency stabilization with on-chip photonic integrated circuits will provide compact, low cost solutions to realize spectrally pure laser sources. Developing high-performance and scalable lasers is critical for applications including quantum photonics, precision navigation and timing, spectroscopy, and high-capacity fiber communications. We demonstrate a significant advance in compact, stabilized lasers to achieve a record low integral emission linewidth and precision carrier stabilization by combining integrated waveguide nonlinear Brillouin and ultra-low loss waveguide reference resonators. Using a pair of 56.4 Million quality factor (Q) Si$_3$N$_4$ waveguide ring-resonators, we reduce the free running Brillouin laser linewidth by over an order of magnitude to 330 Hz integral linewidth and stabilize the carrier to 6.5$times$10$^{-13}$ fractional frequency at 8 ms, reaching the cavity-intrinsic thermorefractive noise limit for frequencies down to 80 Hz. This work demonstrates the lowest linewidth and highest carrier stability achieved to date using planar, CMOS compatible photonic integrated resonators, to the best of our knowledge. These results pave the way to transfer stabilized laser technology from the tabletop to the chip-scale. This advance makes possible scaling the number of stabilized lasers and complexity of atomic and molecular experiments as well as reduced sensitivity to environmental disturbances and portable precision atomic, molecular and optical (AMO) solutions.
We propose a hybrid silicon waveguide scheme to avoid the impact of noise photons induced by pump lights in application scenarios of quantum photonic circuits with quantum light sources. The scheme is composed of strip waveguide and shallow-ridge waveguide structures. It utilizes the difference of biphoton spectra generated by spontaneous four wave mixing (SFWM) in these two waveguides. By proper pumping setting and signal/idler wavelength selection, the generation of desired photon pairs is confined in the strip waveguide. The impact of noise photons generated by SFWM in the shallow-ridge waveguide could be avoided. Hence, the shallow-ridge waveguide could be used to realize various linear operation devices for pump light and quantum state manipulations. The feasibility of this scheme is verified by theoretical analysis and primary experiment. Two applications are proposed and analyzed, showing its great potential on silicon-based quantum photonic circuits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا