No Arabic abstract
We propose a simple, nonlocal modification to general relativity (GR) on large scales, which provides a model of late-time cosmic acceleration in the absence of the cosmological constant and with the same number of free parameters as in standard cosmology. The model is motivated by adding to the gravity sector an extra spin-2 field interacting nonlocally with the physical metric coupled to matter. The form of the nonlocal interaction is inspired by the simplest form of the Deser-Woodard (DW) model, $alpha Rfrac{1}{Box}R$, with one of the Ricci scalars being replaced by a constant $m^{2}$, and gravity is therefore modified in the infrared by adding a simple term of the form $m^2frac{1}{Box}R$ to the Einstein-Hilbert term. We study cosmic expansion histories, and demonstrate that the new model can provide background expansions consistent with observations if $m$ is of the order of the Hubble expansion rate today, in contrast to the simple DW model with no viable cosmology. The model is best fit by $w_0sim-1.075$ and $w_asim0.045$. We also compare the cosmology of the model to that of Maggiore and Mancarella (MM), $m^2Rfrac{1}{Box^2}R$, and demonstrate that the viable cosmic histories follow the standard-model evolution more closely compared to the MM model. We further demonstrate that the proposed model possesses the same number of physical degrees of freedom as in GR. Finally, we discuss the appearance of ghosts in the local formulation of the model, and argue that they are unphysical and harmless to the theory, keeping the physical degrees of freedom healthy.
We study new FRW type cosmological models of modified gravity treated on the background of Palatini approach. These models are generalization of Einstein gravity by the presence of a scalar field non-minimally coupled to the curvature. The models employ Starobinskys term in the Lagrangian and dust matter. Therefore, as a by-product, an exhausted cosmological analysis of general relativity amended by quadratic term is presented. We investigate dynamics of our models, confront them with the currently available astrophysical data as well as against LCDM model. We have used the dynamical system methods in order to investigate dynamics of the models. It reveals the presence of a final sudden singularity. Fitting free parameters we have demonstrated by statistical analysis that this class of models is in a very good agreement with the data (including CMB measurements) as well as with the standard LCDM model predictions. One has to use statefinder diagnostic in order to discriminate among them. Therefore Bayesian methods of model selection have been employed in order to indicate preferred model. Only in the light of CMB data the concordance model remains invincible.
We present the results of computational gravitational backreaction on simple models of cosmic string loops. These results give us insight into the general behavior of cusps and kinks on loops, in addition to other features of evolution. Kinks are rounded off via an asymmetric and divergent correction to the string direction. The result is that cusps emerge in the place of kinks but the resulting smooth string section has a small amount of energy. Existing cusps persist, but quickly lose strength as backreaction removes energy from the string surrounding the cusp. Both kinks and cusps have their location in space shifted slightly with each oscillation.
In the framework of polynomial Palatini cosmology, we investigate a simple cosmological homogeneous and isotropic model with matter in the Einstein frame. We show that in this model during cosmic evolution, it appears the early inflation and the accelerating phase of the expansion for the late times. In this frame we obtain the Friedmann equation with matter and dark energy in the form of a scalar field with the potential whose form is determined in a covariant way by the Ricci scalar of the FRW metric. The energy density of matter and dark energy are also parametrized through the Ricci scalar. The early inflation is obtained only for an infinitesimally small fraction of energy density of matter. Between the matter and dark energy, there exists interaction because the dark energy is decaying. For characterization of inflation we calculate the slow roll parameters and the constant roll parameter in terms of the Ricci scalar. We have found a characteristic behaviour of the time dependence of density of dark energy on the cosmic time following the logistic-like curve which interpolates two almost constant value phases. From the required numbers of $N$-folds we have found a bound on model parameter.
We compute the modified friction coefficient controlling the propagation of tensor metric perturbations in the context of a generalized cosmological scenario based on a theory of gravity with quadratic curvature corrections. In such a context we discuss the differences between gravitational and electromagnetic luminosity distance, as well as the differences with the standard results based on the Einstein equations. We present numerical estimates of the modified luminosity distance on the cosmic redshift scale typical of Supernovae and standard sirens.
This article discusses a dark energy cosmological model in the standard theory of gravity - general relativity with a broad scalar field as a source. Exact solutions of Einsteins field equations are derived by considering a particular form of deceleration parameter $q$, which shows a smooth transition from decelerated to accelerated phase in the evolution of the universe. The external datasets such as Hubble ($H(z)$) datasets, Supernovae (SN) datasets, and Baryonic Acoustic Oscillation (BAO) datasets are used for constraining the model par parameters appearing in the functional form of $q$. The transition redshift is obtained at $% z_{t}=0.67_{-0.36}^{+0.26}$ for the combined data set ($H(z)+SN+BAO$), where the model shows signature-flipping and is consistent with recent observations. Moreover, the present value of the deceleration parameter comes out to be $q_{0}=-0.50_{-0.11}^{+0.12}$ and the jerk parameter $% j_{0}=-0.98_{-0.02}^{+0.06}$ (close to 1) for the combined datasets, which is compatible as per Planck2018 results. The analysis also constrains the omega value i.e., $Omega _{m_{0}}leq 0.269$ for the smooth evolution of the scalar field EoS parameter. It is seen that energy density is higher for the effective energy density of the matter field than energy density in the presence of a scalar field. The evolution of the physical and geometrical parameters is discussed in some details with the model parameters numerical constrained values. Moreover, we have performed the state-finder analysis to investigate the nature of dark energy.