Do you want to publish a course? Click here

Late-time acceleration with a scalar field source: Observational constraints and statefinder diagnostics

97   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This article discusses a dark energy cosmological model in the standard theory of gravity - general relativity with a broad scalar field as a source. Exact solutions of Einsteins field equations are derived by considering a particular form of deceleration parameter $q$, which shows a smooth transition from decelerated to accelerated phase in the evolution of the universe. The external datasets such as Hubble ($H(z)$) datasets, Supernovae (SN) datasets, and Baryonic Acoustic Oscillation (BAO) datasets are used for constraining the model par parameters appearing in the functional form of $q$. The transition redshift is obtained at $% z_{t}=0.67_{-0.36}^{+0.26}$ for the combined data set ($H(z)+SN+BAO$), where the model shows signature-flipping and is consistent with recent observations. Moreover, the present value of the deceleration parameter comes out to be $q_{0}=-0.50_{-0.11}^{+0.12}$ and the jerk parameter $% j_{0}=-0.98_{-0.02}^{+0.06}$ (close to 1) for the combined datasets, which is compatible as per Planck2018 results. The analysis also constrains the omega value i.e., $Omega _{m_{0}}leq 0.269$ for the smooth evolution of the scalar field EoS parameter. It is seen that energy density is higher for the effective energy density of the matter field than energy density in the presence of a scalar field. The evolution of the physical and geometrical parameters is discussed in some details with the model parameters numerical constrained values. Moreover, we have performed the state-finder analysis to investigate the nature of dark energy.



rate research

Read More

Unimodular gravity is an appealing approach to address the cosmological constant problem. In this scenario, the vacuum energy density of quantum fields does not gravitate and the cosmological constant appears merely as an integration constant. Recently, it has been shown that energy diffusion that may arise in quantum gravity and in theories with spontaneous collapse is compatible with this framework by virtue of its restricted diffeomorphism invariance. New studies suggest that this phenomenon could lead to higher-order equations in the context of homogeneous and isotropic Universe, affecting the well-posedness of their Cauchy initial-value problem. In this work, we show that this issue can be circumvented by assuming an equation of state that relates the energy density to the function that characterizes the diffusion. As an application, we solve the field equations analytically for an isotropic and homogeneous Universes in a barotropic model and in the mass-proportional continuous spontaneous localization (CSL) scenario, assuming that only dark matter develops energy diffusion. Different solutions possessing phase transition from decelerated to accelerated expansion are found. We use cosmological data of type Ia Supernovae and observational Hubble data to constrain the free parameters of both models. It is found that very small but nontrivial energy nonconservation is compatible with the barotropic model. However, for the CSL model, we find that the best-fit values are not compatible with previous laboratory experiments. We comment on this fact and propose future directions to explore energy diffusion in cosmology.
We consider stochastic inflation in an interacting scalar field in spatially homogeneous accelerating space-times with a constant principal slow roll parameter $epsilon$. We show that, if the scalar potential is scale invariant (which is the case when scalar contains quartic self-interaction and couples non-minimally to gravity), the late-time solution on accelerating FLRW spaces can be described by a probability distribution function (PDF) $rho$ which is a function of $varphi/H$ only, where $varphi=varphi(vec x)$ is the scalar field and $H=H(t)$ denotes the Hubble parameter. We give explicit late-time solutions for $rhorightarrow rho_infty(varphi/H)$, and thereby find the order $epsilon$ corrections to the Starobinsky-Yokoyama result. This PDF can then be used to calculate e.g. various $n-$point functions of the (self-interacting) scalar field, which are valid at late times in arbitrary accelerating space-times with $epsilon=$ constant.
We consider the late time one-loop quantum backreaction from inflationary fluctuations of a non-minimally coupled, massless scalar field. The scalar is assumed to be a spectator field in an inflationary model with a constant principal slow roll $epsilon$ parameter. We regulate the infrared by matching onto a pre-inflationary radiation era. We find a large late time backreaction when the nonminimal coupling $xi$ is negative (in which case the scalar exhibits a negative mass term during inflation). The one-loop quantum backreaction becomes significant today for moderately small non-minimal couplings, $xisim -1/20$, and it changes sign (from negative to positive) at a recent epoch when inflation lasts not much longer than what is minimally required, $N gtrsim 66$. Since currently we do not have a way of treating the classical fluid and the quantum backreaction in a self-consistent manner, we cannot say decidely whether the backreaction from inflationary quantum fluctuations of a non-minimally coupled scalar can mimic dark energy.
In this work by using a numerical analysis, we investigate in a quantitative way the late-time dynamics of scalar coupled $f(R,mathcal{G})$ gravity. Particularly, we consider a Gauss-Bonnet term coupled to the scalar field coupling function $xi(phi)$, and we study three types of models, one with $f(R)$ terms that are known to provide a viable late-time phenomenology, and two Einstein-Gauss-Bonnet types of models. Our aim is to write the Friedmann equation in terms of appropriate statefinder quantities frequently used in the literature, and we numerically solve it by using physically motivated initial conditions. In the case that $f(R)$ gravity terms are present, the contribution of the Gauss-Bonnet related terms is minor, as we actually expected. This result is robust against changes in the initial conditions of the scalar field, and the reason is the dominating parts of the $f(R)$ gravity sector at late times. In the Einstein-Gauss-Bonnet type of models, we examine two distinct scenarios, firstly by choosing freely the scalar potential and the scalar Gauss-Bonnet coupling $xi(phi)$, in which case the resulting phenomenology is compatible with the latest Planck data and mimics the $Lambda$-Cold-Dark-Matter model. In the second case, since there is no fundamental particle physics reason for the graviton to change its mass, we assume that primordially the tensor perturbations propagate with the speed equal to that of lights, and thus this constraint restricts the functional form of the scalar coupling function $xi(phi)$, which must satisfy the differential equation $ddot{xi}=Hdot{xi}$.
77 - Qing Gao , Yungui Gong , Qin Fei 2018
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio up to the first order by using the method of Bessel function approximation. The derived $n_s-r$ results for the constant-roll inflation are also compared with the observations, we find that only one constant-roll inflation is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا