Condition based maintenance is a modern approach to maintenance which has been successfully used in several industrial sectors. In this paper we present a concrete statistical approach to condition based maintenance for wind turbine by applying ideas from statistical process control. A specific problem in wind turbine maintenance is that failures of a certain part may have causes that originate in other parts a long time ago. This calls for methods that can produce timely warnings by combining sensor data from different sources. Our method improves on existing methods used in wind turbine maintenance by using adaptive alarm thresholds for the monitored parameters that correct for values of other relevant parameters. We illustrate our method with a case study that shows that our method is able to predict upcoming failures much earlier than currently used methods.
We suggest a mathematical model for computing and regularly updating the next preventive maintenance plan for a wind farm. Our optimization criterium takes into account the current ages of the key components, the major maintenance costs including eventual energy production losses as well as the available data monitoring the condition of the wind turbines. We illustrate our approach with a case study based on data collected from several wind farms located in Sweden. Our results show that preventive maintenance planning gives some effect, if the wind turbine components in question live significantly shorter than the turbine itself.
This paper presents the physical operating principles of several micro wind turbines based on different aerodynamic forces: drag-type Vertical Axis Wind Turbine (VAWT) and lift-type Horizontal Axis Wind Turbine (HAWT). All these devices share the similarity of exploiting the same mechanical-to-electrical conversion: the electrostatic conversion. This type of conversion is based on capacitance variations induced by the motion between a rotor and a stator and requires a source of polarization. We will focus our study on two technologies to polarize the capacitive structure: the use of electrets and the exploitation of triboelectricity. Some experiments conducted in a low-speed wind tunnel between 0 and 20m.s-1 have highlighted power flux densities from 0 to 150{mu}W.cm-2 corresponding to power coefficients of 0 and 9% respectively. Among these results, we can especially retain an ultralow speed operation, which has never been reached until now, in terms of speed and efficiency (9% of efficiency at 1m.s-1). Finally, we will end up comparing different types of circuits to supply a temperature/acceleration sensor, in order to complete the energy harvesting chain.
Background. This paper study statistical data gathered from wind turbines located on the territory of the Republic of Poland. The research is aimed to construct the stochastic model that predicts the change of wind speed with time. Purpose. The purpose of this work is to find the optimal distribution for the approximation of available statistical data on wind speed. Methods. We consider four distributions of a random variable: Log-Normal, Weibull, Gamma and Beta. In order to evaluate the parameters of distributions we use method of maximum likelihood. To assess the the results of approximation we use a quantile-quantile plot. Results. All the considered distributions properly approximate the available data. The Weibull distribution shows the best results for the extreme values of the wind speed. Conclusions. The results of the analysis are consistent with the common practice of using the Weibull distribution for wind speed modeling. In the future we plan to compare the results obtained with a much larger data set as well as to build a stochastic model of the evolution of the wind speed depending on time.
Background: All-in-one station-based health monitoring devices are implemented in elder homes in Hong Kong to support the monitoring of vital signs of the elderly. During a pilot study, it was discovered that the systolic blood pressure was incorrectly measured during multiple weeks. A real-time solution was needed to identify future data quality issues as soon as possible. Methods: Control charts are an effective tool for real-time monitoring and signaling issues (changes) in data. In this study, as in other healthcare applications, many observations are missing. Few methods are available for monitoring data with missing observations. A data quality monitoring method is developed to signal issues with the accuracy of the collected data quickly. This method has the ability to deal with missing observations. A Hotellings T-squared control chart is selected as the basis for our proposed method. Findings: The proposed method is retrospectively validated on a case study with a known measurement error in the systolic blood pressure measurements. The method is able to adequately detect this data quality problem. The proposed method was integrated into a personalized telehealth monitoring system and prospectively implemented in a second case study. It was found that the proposed scheme supports the control of data quality. Conclusions: Data quality is an important issue and control charts are useful for real-time monitoring of data quality. However, these charts must be adjusted to account for missing data that often occur in healthcare context.
Early detection of changes in the frequency of events is an important task, in, for example, disease surveillance, monitoring of high-quality processes, reliability monitoring and public health. In this article, we focus on detecting changes in multivariate event data, by monitoring the time-between-events (TBE). Existing multivariate TBE charts are limited in the sense that, they only signal after an event occurred for each of the individual processes. This results in delays (i.e., long time to signal), especially if it is of interest to detect a change in one or a few of the processes. We propose a bivariate TBE (BTBE) chart which is able to signal in real time. We derive analytical expressions for the control limits and average time-to-signal performance, conduct a performance evaluation and compare our chart to an existing method. The findings showed that our method is a realistic approach to monitor bivariate time-between-event data, and has better detection ability than existing methods. A large benefit of our method is that it signals in real-time and that due to the analytical expressions no simulation is needed. The proposed method is implemented on a real-life dataset related to AIDS.