Do you want to publish a course? Click here

Monitoring data quality for telehealth systems in the presence of missing data

75   0   0.0 ( 0 )
 Added by Philipp Wittenberg
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Background: All-in-one station-based health monitoring devices are implemented in elder homes in Hong Kong to support the monitoring of vital signs of the elderly. During a pilot study, it was discovered that the systolic blood pressure was incorrectly measured during multiple weeks. A real-time solution was needed to identify future data quality issues as soon as possible. Methods: Control charts are an effective tool for real-time monitoring and signaling issues (changes) in data. In this study, as in other healthcare applications, many observations are missing. Few methods are available for monitoring data with missing observations. A data quality monitoring method is developed to signal issues with the accuracy of the collected data quickly. This method has the ability to deal with missing observations. A Hotellings T-squared control chart is selected as the basis for our proposed method. Findings: The proposed method is retrospectively validated on a case study with a known measurement error in the systolic blood pressure measurements. The method is able to adequately detect this data quality problem. The proposed method was integrated into a personalized telehealth monitoring system and prospectively implemented in a second case study. It was found that the proposed scheme supports the control of data quality. Conclusions: Data quality is an important issue and control charts are useful for real-time monitoring of data quality. However, these charts must be adjusted to account for missing data that often occur in healthcare context.



rate research

Read More

Early detection of changes in the frequency of events is an important task, in, for example, disease surveillance, monitoring of high-quality processes, reliability monitoring and public health. In this article, we focus on detecting changes in multivariate event data, by monitoring the time-between-events (TBE). Existing multivariate TBE charts are limited in the sense that, they only signal after an event occurred for each of the individual processes. This results in delays (i.e., long time to signal), especially if it is of interest to detect a change in one or a few of the processes. We propose a bivariate TBE (BTBE) chart which is able to signal in real time. We derive analytical expressions for the control limits and average time-to-signal performance, conduct a performance evaluation and compare our chart to an existing method. The findings showed that our method is a realistic approach to monitor bivariate time-between-event data, and has better detection ability than existing methods. A large benefit of our method is that it signals in real-time and that due to the analytical expressions no simulation is needed. The proposed method is implemented on a real-life dataset related to AIDS.
98 - Chen Xu , Yao Xie 2021
We develop a distribution-free, unsupervised anomaly detection method called ECAD, which wraps around any regression algorithm and sequentially detects anomalies. Rooted in conformal prediction, ECAD does not require data exchangeability but approximately controls the Type-I error when data are normal. Computationally, it involves no data-splitting and efficiently trains ensemble predictors to increase statistical power. We demonstrate the superior performance of ECAD on detecting anomalous spatio-temporal traffic flow.
One of the classic concerns in statistics is determining if two samples come from thesame population, i.e. homogeneity testing. In this paper, we propose a homogeneitytest in the context of Functional Data Analysis, adopting an idea from multivariatedata analysis: the data depth plot (DD-plot). This DD-plot is a generalization of theunivariate Q-Q plot (quantile-quantile plot). We propose some statistics based onthese DD-plots, and we use bootstrapping techniques to estimate their distributions.We estimate the finite-sample size and power of our test via simulation, obtainingbetter results than other homogeneity test proposed in the literature. Finally, weillustrate the procedure in samples of real heterogeneous data and get consistent results.
This work is motivated by the Obepine French system for SARS-CoV-2 viral load monitoring in wastewater. The objective of this work is to identify, from time-series of noisy measurements, the underlying auto-regressive signals, in a context where the measurements present numerous missing data, censoring and outliers. We propose a method based on an auto-regressive model adapted to censored data with outliers. Inference and prediction are produced via a discretised smoother. This method is both validated on simulations and on real data from Obepine. The proposed method is used to denoise measurements from the quantification of the SARS-CoV-2 E gene in wastewater by RT-qPCR. The resulting smoothed signal shows a good correlation with other epidemiological indicators and an estimate of the whole system noise is produced.
Cherenkov telescope experiments, such as H.E.S.S., have been very successful in astronomical observations in the very-high-energy (VHE; E $>$ 100 GeV) regime. As an integral part of the detector, such experiments use Earths atmosphere as a calorimeter. For the calibration and energy determination, a standard model atmosphere is assumed. Deviations of the real atmosphere from the model may therefore lead to an energy misreconstruction of primary gamma rays. To guarantee satisfactory data quality with respect to difficult atmospheric conditions, several atmospheric data quality criteria are implemented in the H.E.S.S. software. These quantities are sensitive to clouds and aerosols. Here, the Cherenkov transparency coefficient will be presented. It is a new monitoring quantity that is able to measure long-term changes in the atmospheric transparency. The Cherenkov transparency coefficient derives exclusively from Cherenkov data and is quite hardware-independent. Furthermore, its positive correlation with independent satellite measurements, performed by the Multi-angle Imaging SpectroRadiometer (MISR), will be presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا