Do you want to publish a course? Click here

Quantum phases of two-dimensional $mathbb{Z}_2$ gauge theory coupled to single-component fermion matter

70   0   0.0 ( 0 )
 Added by Sergej Moroz
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the rich quantum phase diagram of Wegners theory of discrete Ising gauge fields interacting with $U(1)$ symmetric single-component fermion matter hopping on a two-dimensional square lattice. In particular limits the model reduces to (i) pure $mathbb{Z}_2$ even and odd gauge theories, (ii) free fermions in a static background of deconfined $mathbb{Z}_2$ gauge fields, (iii) the kinetic Rokhsar-Kivelson quantum dimer model at a generic dimer filling. We develop a local transformation that maps the lattice gauge theory onto a model of $mathbb{Z}_2$ gauge-invariant spin $1/2$ degrees of freedom. Using the mapping, we perform numerical density matrix renormalization group calculations that corroborate our understanding of the limits identified above. Moreover, in the absence of the magnetic plaquette term, we reveal signatures of topologically ordered Dirac semimetal and staggered Mott insulator phases at half-filling. At strong coupling, the lattice gauge theory displays fracton phenomenology with isolated fermions being completely frozen and dimers exhibiting restricted mobility. In that limit, we predict that in the ground state dimers form compact clusters, whose hopping is suppressed exponentially in their size. We determine the band structure of the smallest clusters numerically using exact diagonalization.



rate research

Read More

We investigate a quantum many-body lattice system of one-dimensional spinless fermions interacting with a dynamical $Z_2$ gauge field. The gauge field mediates long-range attraction between fermions resulting in their confinement into bosonic dimers. At strong coupling we develop an exactly solvable effective theory of such dimers with emergent constraints. Even at generic coupling and fermion density, the model can be rewritten as a local spin chain. Using the Density Matrix Renormalization Group the system is shown to form a Luttinger liquid, indicating the emergence of fractionalized excitations despite the confinement of lattice fermions. In a finite chain we observe the doubling of the period of Friedel oscillations which paves the way towards experimental detection of confinement in this system. We discuss the possibility of a Mott phase at the commensurate filling $2/3$.
We probe the superconducting gap in the zero temperature ground state of an attractively interacting spin-imbalanced two-dimensional Fermi gas with Diffusion Monte Carlo. A condensate fraction at nonzero pair momentum evidences a spatially non-uniform superconducting order parameter. Comparison with exact diagonalisation studies confirms that the nonzero condensate fraction across a range of nonzero fermion pair momenta is consistent with non-exclusive pairing between majority and minority fermions, an extension beyond FFLO theory.
131 - F. Iemini , L. Mazza , L. Fallani 2017
We show how angular momentum conservation can stabilise a symmetry-protected quasi-topological phase of matter supporting Majorana quasi-particles as edge modes in one-dimensional cold atom gases. We investigate a number-conserving four-species Hubbard model in the presence of spin-orbit coupling. The latter reduces the global spin symmetry to an angular momentum parity symmetry, which provides an extremely robust protection mechanism that does not rely on any coupling to additional reservoirs. The emergence of Majorana edge modes is elucidated using field theory techniques, and corroborated by density-matrix-renormalization-group simulations. Our results pave the way toward the observation of Majorana edge modes with alkaline-earth-like fermions in optical lattices, where all basic ingredients for our recipe - spin-orbit coupling and strong inter-orbital interactions - have been experimentally realized over the last two years.
Recent experiments on a one-dimensional chain of trapped alkali atoms [arXiv:1707.04344] have observed a quantum transition associated with the onset of period-3 ordering of pumped Rydberg states. This spontaneous $mathbb{Z}_3$ symmetry breaking is described by a constrained model of hard-core bosons proposed by Fendley $et, ,al.$ [arXiv:cond-mat/0309438]. By symmetry arguments, the transition is expected to be in the universality class of the $mathbb{Z}_3$ chiral clock model with parameters preserving both time-reversal and spatial-inversion symmetries. We study the nature of the order-disorder transition in these models, and numerically calculate its critical exponents with exact diagonalization and density-matrix renormalization group techniques. We use finite-size scaling to determine the dynamical critical exponent $z$ and the correlation length exponent $ u$. Our analysis presents the only known instance of a strongly-coupled transition between gapped states with $z e 1$, implying an underlying nonconformal critical field theory.
Under the perspective of realizing analog quantum simulations of lattice gauge theories, ladder geometries offer an intriguing playground, relevant for ultracold atom experiments. Here, we investigate Hamiltonian lattice gauge theories defined in two-leg ladders. We consider a model that includes both gauge boson and Higgs matter degrees of freedom with local $mathbb{Z}_N$ gauge symmetries. We study its phase diagram based on both an effective low-energy field theory and density matrix renormalization group simulations. For $Nge 5$, an extended gapless Coulomb phase emerges, which is separated by a Berezinskii-Kosterlitz-Thouless phase transition from the surrounding gapped phase. Besides the traditional confined and Higgs regimes, we also observe a novel quadrupolar region, originated by the ladder geometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا