No Arabic abstract
The dynamic response of dipole skyrmions in Fe/Gd multilayer films is investigated by ferromagnetic resonance measurements and compared to micromagnetic simulations. We detail thickness and temperature dependent studies of the observed modes as well as the effects of magnetic field history on the resonant spectra. Correlation between the modes and the magnetic phase maps constructed from real-space imaging and scattering patterns allows us to conclude the resonant modes arise from local topological features such as dipole skyrmions but does not depend on the collective response of a closed packed lattice of these chiral textures. Using, micromagnetic modeling, we are able to quantitatively reproduce our experimental observations which suggests the existence of localized spin-wave modes that are dependent on the helicity of the dipole skyrmion. We identify four localized spin wave excitations for the skyrmions that are excited under either in-plane or out-of-plane r.f. fields. Lastly we show that dipole skyrmions and non-chiral bubble domains exhibit qualitatively different localized spin wave modes.
In this work we analyse the role of a thin Cr spacer between Fe and Gd layers on structure and magnetic properties of a [Fe(35A)/Cr(tCr)/Gd(50A)/Cr(tCr)]x12 superlattice. Samples without the Cr spacer (tCr=0) and with a thin tCr=4A are investigated using X-ray diffraction, polarized neutron and resonance X-ray magnetic reflectometry, SQUID magnetometery, magneto-optical Kerr effect and ferromagnetic resonance techniques. Magnetic properties are studied experimentally in a wide temperature range 4-300K and analysed theoretically using numerical simulation on the basis of the mean-field model. We show that a reasonable agreement with the experimental data can be obtained considering temperature dependence of the effective field parameter in gadolinium layers. The analysis of the experimental data shows that besides a strong reduction of the antiferromagnetic coupling between Fe and Gd, the introduction of Cr spacers into Fe/Gd superlattice leads to modification of both structural and magnetic characteristics of the ferromagnetic layers.
In recent years, there has been an intense interest in understanding the microscopic mechanism of thermally induced magnetization switching driven by a femtosecond laser pulse. Most of the effort has been dedicated to periodic crystalline structures while the amorphous counterparts have been less studied. By using a multiscale approach, i.e. first-principles density functional theory combined with atomistic spin dynamics, we report here on the very intricate structural and magnetic nature of amorphous Gd-Fe alloys for a wide range of Gd and Fe atomic concentrations at the nanoscale level. Both structural and dynamical properties of Gd-Fe alloys reported in this work are in good agreement with previous experiments. We calculated the dynamic behavior of homogeneous and inhomogeneous amorphous Gd-Fe alloys and their response under the influence of a femtosecond laser pulse. In the homogeneous sample, the Fe sublattice switches its magnetization before the Gd one. However, the temporal sequence of the switching of the two sublattices is reversed in the inhomogeneous sample. We propose a possible explanation based on a mechanism driven by a combination of the Dzyaloshiskii-Moriya interaction and exchange frustration, modeled by an antiferromagnetic second-neighbour exchange interaction between Gd atoms in the Gd-rich region. We also report on the influence of laser fluence and damping effects in the all-thermal switching.
We experimentally demonstrate the formation of room-temperature skyrmions with radii of about 25,nm in easy-plane anisotropy multilayers with interfacial Dzyaloshinskii-Moriya interaction (DMI). We detect the formation of individual magnetic skyrmions by magnetic force microscopy and find that the skyrmions are stable in out-of-plane fields up to about 200 mT. We determine the interlayer exchange coupling as well as the strength of the interfacial DMI. Additionally, we investigate the dynamic microwave spin excitations by broadband magnetic resonance spectroscopy. From the uniform Kittel mode we determine the magnetic anisotropy and low damping $alpha_{mathrm{G}} < 0.04$. We also find clear magnetic resonance signatures in the non-uniform (skyrmion) state. Our findings demonstrate that skyrmions in easy-plane multilayers are promising for spin-dynamical applications.
Results of magnetization, magnetotransport and Mossbauer spectroscopy measurements of sequentially evaporated Fe-Ag granular composites are presented. The strong magnetic scattering of the conduction electrons is reflected in the sublinear temperature dependence of the resistance and in the large negative magnetoresistance. The simultaneous analysis of the magnetic properties and the transport behavior suggests a bimodal grain size distribution. A detailed quantitative description of the unusual features observed in the transport properties is given.
Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks, recent experimental evidence favours the competing crystallite model in the case of amorphous silicon. In two-dimensional materials, however, the corresponding questions remain unanswered. Here we report the synthesis, by laser-assisted chemical vapour deposition, of centimetre-scale, free-standing, continuous and stable monolayer amorphous carbon, topologically distinct from disordered graphene. Unlike in bulk materials, the structure of monolayer amorphous carbon can be determined by atomic-resolution imaging. Extensive characterization by Raman and X-ray spectroscopy and transmission electron microscopy reveals the complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and five-, six-, seven- and eight-member rings. The ring distribution is not a Zachariasen continuous random network, but resembles the competing (nano)crystallite model. We construct a corresponding model that enables density-functional-theory calculations of the properties of monolayer amorphous carbon, in accordance with observations. Direct measurements confirm that it is insulating, with resistivity values similar to those of boron nitride grown by chemical vapour deposition. Free-standing monolayer amorphous carbon is surprisingly stable and deforms to a high breaking strength, without crack propagation from the point of fracture. The excellent physical properties of this stable, free-standing monolayer amorphous carbon could prove useful for permeation and diffusion barriers in applications such as magnetic recording devices and flexible electronics.