Do you want to publish a course? Click here

Robust formation of nanoscale magnetic skyrmions in easy-plane thin film multilayers with low damping

368   0   0.0 ( 0 )
 Added by Luis Flacke
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally demonstrate the formation of room-temperature skyrmions with radii of about 25,nm in easy-plane anisotropy multilayers with interfacial Dzyaloshinskii-Moriya interaction (DMI). We detect the formation of individual magnetic skyrmions by magnetic force microscopy and find that the skyrmions are stable in out-of-plane fields up to about 200 mT. We determine the interlayer exchange coupling as well as the strength of the interfacial DMI. Additionally, we investigate the dynamic microwave spin excitations by broadband magnetic resonance spectroscopy. From the uniform Kittel mode we determine the magnetic anisotropy and low damping $alpha_{mathrm{G}} < 0.04$. We also find clear magnetic resonance signatures in the non-uniform (skyrmion) state. Our findings demonstrate that skyrmions in easy-plane multilayers are promising for spin-dynamical applications.



rate research

Read More

We demonstrate that chiral skyrmionic magnetization configurations can be found as the minimum energy state in B20 thin film materials with easy-plane magnetocrystalline anisotropy with an applied magnetic field perpendicular to the film plane. Our observations contradict results from prior analytical work, but are compatible with recent experimental investigations. The size of the observed skyrmions increases with the easy-plane magnetocrystalline anisotropy. We use a full micromagnetic model including demagnetization and a three-dimensional geometry to find local energy minimum (metastable) magnetization configurations using numerical damped time integration. We explore the phase space of the system and start simulations from a variety of initial magnetization configurations to present a systematic overview of anisotropy and magnetic field parameters for which skyrmions are metastable and global energy minimum (stable) states.
Non-collinear magnets exhibit a rich array of dynamic properties at microwave frequencies. They can host nanometre-scale topological textures known as skyrmions, whose spin resonances are expected to be highly sensitive to their local magnetic environment. Here, we report a magnetic resonance study of an [Ir/Fe/Co/Pt] multilayer hosting Neel skyrmions at room temperature. Experiments reveal two distinct resonances of the skyrmion phase during in-plane ac excitation, with frequencies between 6-12 GHz. Complementary micromagnetic simulations indicate that the net magnetic dipole moment rotates counterclockwise (CCW) during both resonances. The magnon probability distribution for the lower-frequency resonance is localised within isolated skyrmions, unlike the higher-frequency mode which principally originates from areas between skyrmions. However, the properties of both modes depend sensitively on the out-of-plane dipolar coupling, which is controlled via the ferromagnetic layer spacing in our heterostructures. The gyrations of stable isolated skyrmions reported in this room temperature study encourage the development of new material platforms and applications based on skyrmion resonances. Moreover, our material architecture enables the resonance spectra to be tuned, thus extending the functionality of such applications over a broadband frequency range.
We describe epitaxial Ge/Si multilayers with cross-plane thermal conductivities which can be systematically reduced to exceptionally low values, as compared both with bulk and thin-film SiGe alloys of the same average concentration, by simply changing the thicknesses of the constituent layers. Ab initio calculations reveal that partial interdiffusion of Ge into the Si spacers, which naturally results from Ge segregation during growth, plays a determinant role, lowering the thermal conductivity below what could be achieved without interdiffusion (perfect superlattice), or with total interdiffusion (alloy limit). This phenomenon is similar to the one previously observed in alloys with embedded nanoparticles, and it stresses the importance of combining alloy and nanosized scatterers simultaneously to minimize thermal conductivity. Our calculations thus suggest that superlattices with sharp interfaces, which are commonly sought but difficult to realize, are worse than compositionally-modulated Si1-xGex multilayers in the search for materials with ultralow thermal conductivities.
Facing the ever-growing demand for data storage will most probably require a new paradigm. Magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films where the cobalt layer is sandwiched between two heavy metals providing additive interfacial Dzyaloshinskii-Moriya interactions, which reach about 2 mJ/m2 in the case of the Ir/Co/Pt multilayers. Using a magnetization-sensitive scanning x-ray transmission microscopy technique, we imaged magnetic bubble-like domains in these multilayers. The study of their behavir in magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the Dzyaloshinsskii-Moriya interaction. This discoevry of stable skyrmions at room temperature in a technologically relevant material opens the way for device applications in a near future.
Magnetic skyrmions are topologically stable spin swirling particle like entities which are appealing for next generation spintronic devices. The expected low critical current density for the motion of skyrmions makes them potential candidates for future energy efficient electronic devices. Several heavy metal/ferromagnetic (HM/FM) systems have been explored in the past decade to achieve faster skyrmion velocity at low current densities. In this context, we have studied Pt/CoFeB/MgO heterostructures in which skyrmions have been stabilized at room temperature (RT). It has been observed that the shape of the skyrmions are perturbed even by the small stray field arising from low moment magnetic tips while performing the magnetic force microscopy (MFM), indicating presence of low pinning landscape in the samples. This hypothesis is indeed confirmed by the low threshold current density to drive the skyrmions in our sample, at velocities of few 10 m/s.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا