Do you want to publish a course? Click here

Automated Phrase Mining from Massive Text Corpora

217   0   0.0 ( 0 )
 Added by Jingbo Shang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

As one of the fundamental tasks in text analysis, phrase mining aims at extracting quality phrases from a text corpus. Phrase mining is important in various tasks such as information extraction/retrieval, taxonomy construction, and topic modeling. Most existing methods rely on complex, trained linguistic analyzers, and thus likely have unsatisfactory performance on text corpora of new domains and genres without extra but expensive adaption. Recently, a few data-driven methods have been developed successfully for extraction of phrases from massive domain-specific text. However, none of the state-of-the-art models is fully automated because they require human experts for designing rules or labeling phrases. Since one can easily obtain many quality phrases from public knowledge bases to a scale that is much larger than that produced by human experts, in this paper, we propose a novel framework for automated phrase mining, AutoPhrase, which leverages this large amount of high-quality phrases in an effective way and achieves better performance compared to limited human labeled phrases. In addition, we develop a POS-guided phrasal segmentation model, which incorporates the shallow syntactic information in part-of-speech (POS) tags to further enhance the performance, when a POS tagger is available. Note that, AutoPhrase can support any language as long as a general knowledge base (e.g., Wikipedia) in that language is available, while benefiting from, but not requiring, a POS tagger. Compared to the state-of-the-art methods, the new method has shown significant improvements in effectiveness on five real-world datasets across different domains and languages.



rate research

Read More

While most topic modeling algorithms model text corpora with unigrams, human interpretation often relies on inherent grouping of terms into phrases. As such, we consider the problem of discovering topical phrases of mixed lengths. Existing work either performs post processing to the inference results of unigram-based topic models, or utilizes complex n-gram-discovery topic models. These methods generally produce low-quality topical phrases or suffer from poor scalability on even moderately-sized datasets. We propose a different approach that is both computationally efficient and effective. Our solution combines a novel phrase mining framework to segment a document into single and multi-word phrases, and a new topic model that operates on the induced document partition. Our approach discovers high quality topical phrases with negligible extra cost to the bag-of-words topic model in a variety of datasets including research publication titles, abstracts, reviews, and news articles.
Language models such as GPT-2 have performed well on constructing syntactically sound sentences for text auto-completion task. However, such models often require considerable training effort to adapt to specific writing domains (e.g., medical). In this paper, we propose an intermediate training strategy to enhance pre-trained language models performance in the text auto-completion task and fastly adapt them to specific domains. Our strategy includes a novel self-supervised training objective called Next Phrase Prediction (NPP), which encourages a language model to complete the partial query with enriched phrases and eventually improve the models text auto-completion performance. Preliminary experiments have shown that our approach is able to outperform the baselines in auto-completion for email and academic writing domains.
In this paper, we propose Neural Phrase-to-Phrase Machine Translation (NP$^2$MT). Our model uses a phrase attention mechanism to discover relevant input (source) segments that are used by a decoder to generate output (target) phrases. We also design an efficient dynamic programming algorithm to decode segments that allows the model to be trained faster than the existing neural phrase-based machine translation method by Huang et al. (2018). Furthermore, our method can naturally integrate with external phrase dictionaries during decoding. Empirical experiments show that our method achieves comparable performance with the state-of-the art methods on benchmark datasets. However, when the training and testing data are from different distributions or domains, our method performs better.
Automatic grading is not a new approach but the need to adapt the latest technology to automatic grading has become very important. As the technology has rapidly became more powerful on scoring exams and essays, especially from the 1990s onwards, partially or wholly automated grading systems using computational methods have evolved and have become a major area of research. In particular, the demand of scoring of natural language responses has created a need for tools that can be applied to automatically grade these responses. In this paper, we focus on the concept of automatic grading of short answer questions such as are typical in the UK GCSE system, and providing useful feedback on their answers to students. We present experimental results on a dataset provided from the introductory computer science class in the University of North Texas. We first apply standard data mining techniques to the corpus of student answers for the purpose of measuring similarity between the student answers and the model answer. This is based on the number of common words. We then evaluate the relation between these similarities and marks awarded by scorers. We then consider an approach that groups student answers into clusters. Each cluster would be awarded the same mark, and the same feedback given to each answer in a cluster. In this manner, we demonstrate that clusters indicate the groups of students who are awarded the same or the similar scores. Words in each cluster are compared to show that clusters are constructed based on how many and which words of the model answer have been used. The main novelty in this paper is that we design a model to predict marks based on the similarities between the student answers and the model answer.
Following detailed presentation of the Core Conflictual Relationship Theme (CCRT), there is the objective of relevant methods for what has been described as verbalization and visualization of data. Such is also termed data mining and text mining, and knowledge discovery in data. The Correspondence Analysis methodology, also termed Geometric Data Analysis, is shown in a case study to be comprehensive and revealing. Computational efficiency depends on how the analysis process is structured. For both illustrative and revealing aspects of the case study here, relatively extensive dream reports are used. This Geometric Data Analysis confirms the validity of CCRT method.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا