Do you want to publish a course? Click here

Improving Text Auto-Completion with Next Phrase Prediction

77   0   0.0 ( 0 )
 Added by Dong-Ho Lee
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Language models such as GPT-2 have performed well on constructing syntactically sound sentences for text auto-completion task. However, such models often require considerable training effort to adapt to specific writing domains (e.g., medical). In this paper, we propose an intermediate training strategy to enhance pre-trained language models performance in the text auto-completion task and fastly adapt them to specific domains. Our strategy includes a novel self-supervised training objective called Next Phrase Prediction (NPP), which encourages a language model to complete the partial query with enriched phrases and eventually improve the models text auto-completion performance. Preliminary experiments have shown that our approach is able to outperform the baselines in auto-completion for email and academic writing domains.



rate research

Read More

The Bloomberg Terminal has been a leading source of financial data and analytics for over 30 years. Through its thousands of functions, the Terminal allows its users to query and run analytics over a large array of data sources, including structured, semi-structured, and unstructured data; as well as plot charts, set up event-driven alerts and triggers, create interactive maps, exchange information via instant and email-style messages, and so on. To improve user experience, we have been building question answering systems that can understand a wide range of natural language constructions for various domains that are of fundamental interest to our users. Such natural language interfaces, while exceedingly helpful to users, introduce a number of usability challenges of their own. We tackle some of these challenges through auto-completion for query formulation. A distinguishing mark of our auto-complete systems is that they are based on and guided by corresponding semantic parsing systems. We describe the auto-complete problem as it arises in this setting, the novel algorithms that we use to solve it, and report on the quality of the results and the efficiency of our approach.
101 - Sida Wang , Weiwei Guo , Huiji Gao 2020
Query Auto Completion (QAC), as the starting point of information retrieval tasks, is critical to user experience. Generally it has two steps: generating completed query candidates according to query prefixes, and ranking them based on extracted features. Three major challenges are observed for a query auto completion system: (1) QAC has a strict online latency requirement. For each keystroke, results must be returned within tens of milliseconds, which poses a significant challenge in designing sophisticated language models for it. (2) For unseen queries, generated candidates are of poor quality as contextual information is not fully utilized. (3) Traditional QAC systems heavily rely on handcrafted features such as the query candidate frequency in search logs, lacking sufficient semantic understanding of the candidate. In this paper, we propose an efficient neural QAC system with effective context modeling to overcome these challenges. On the candidate generation side, this system uses as much information as possible in unseen prefixes to generate relevant candidates, increasing the recall by a large margin. On the candidate ranking side, an unnormalized language model is proposed, which effectively captures deep semantics of queries. This approach presents better ranking performance over state-of-the-art neural ranking methods and reduces $sim$95% latency compared to neural language modeling methods. The empirical results on public datasets show that our model achieves a good balance between accuracy and efficiency. This system is served in LinkedIn job search with significant product impact observed.
While most topic modeling algorithms model text corpora with unigrams, human interpretation often relies on inherent grouping of terms into phrases. As such, we consider the problem of discovering topical phrases of mixed lengths. Existing work either performs post processing to the inference results of unigram-based topic models, or utilizes complex n-gram-discovery topic models. These methods generally produce low-quality topical phrases or suffer from poor scalability on even moderately-sized datasets. We propose a different approach that is both computationally efficient and effective. Our solution combines a novel phrase mining framework to segment a document into single and multi-word phrases, and a new topic model that operates on the induced document partition. Our approach discovers high quality topical phrases with negligible extra cost to the bag-of-words topic model in a variety of datasets including research publication titles, abstracts, reviews, and news articles.
As one of the fundamental tasks in text analysis, phrase mining aims at extracting quality phrases from a text corpus. Phrase mining is important in various tasks such as information extraction/retrieval, taxonomy construction, and topic modeling. Most existing methods rely on complex, trained linguistic analyzers, and thus likely have unsatisfactory performance on text corpora of new domains and genres without extra but expensive adaption. Recently, a few data-driven methods have been developed successfully for extraction of phrases from massive domain-specific text. However, none of the state-of-the-art models is fully automated because they require human experts for designing rules or labeling phrases. Since one can easily obtain many quality phrases from public knowledge bases to a scale that is much larger than that produced by human experts, in this paper, we propose a novel framework for automated phrase mining, AutoPhrase, which leverages this large amount of high-quality phrases in an effective way and achieves better performance compared to limited human labeled phrases. In addition, we develop a POS-guided phrasal segmentation model, which incorporates the shallow syntactic information in part-of-speech (POS) tags to further enhance the performance, when a POS tagger is available. Note that, AutoPhrase can support any language as long as a general knowledge base (e.g., Wikipedia) in that language is available, while benefiting from, but not requiring, a POS tagger. Compared to the state-of-the-art methods, the new method has shown significant improvements in effectiveness on five real-world datasets across different domains and languages.
380 - Yao Qiu , Jinchao Zhang , Jie Zhou 2021
Recent work has proposed several efficient approaches for generating gradient-based adversarial perturbations on embeddings and proved that the models performance and robustness can be improved when they are trained with these contaminated embeddings. While they paid little attention to how to help the model to learn these adversarial samples more efficiently. In this work, we focus on enhancing the models ability to defend gradient-based adversarial attack during the models training process and propose two novel adversarial training approaches: (1) CARL narrows the original sample and its adversarial sample in the representation space while enlarging their distance from different labeled samples. (2) RAR forces the model to reconstruct the original sample from its adversarial representation. Experiments show that the proposed two approaches outperform strong baselines on various text classification datasets. Analysis experiments find that when using our approaches, the semantic representation of the input sentence wont be significantly affected by adversarial perturbations, and the models performance drops less under adversarial attack. That is to say, our approaches can effectively improve the robustness of the model. Besides, RAR can also be used to generate text-form adversarial samples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا