Do you want to publish a course? Click here

Automatic Short Answer Grading and Feedback Using Text Mining Methods

55   0   0.0 ( 0 )
 Added by Neslihan Suzen
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Automatic grading is not a new approach but the need to adapt the latest technology to automatic grading has become very important. As the technology has rapidly became more powerful on scoring exams and essays, especially from the 1990s onwards, partially or wholly automated grading systems using computational methods have evolved and have become a major area of research. In particular, the demand of scoring of natural language responses has created a need for tools that can be applied to automatically grade these responses. In this paper, we focus on the concept of automatic grading of short answer questions such as are typical in the UK GCSE system, and providing useful feedback on their answers to students. We present experimental results on a dataset provided from the introductory computer science class in the University of North Texas. We first apply standard data mining techniques to the corpus of student answers for the purpose of measuring similarity between the student answers and the model answer. This is based on the number of common words. We then evaluate the relation between these similarities and marks awarded by scorers. We then consider an approach that groups student answers into clusters. Each cluster would be awarded the same mark, and the same feedback given to each answer in a cluster. In this manner, we demonstrate that clusters indicate the groups of students who are awarded the same or the similar scores. Words in each cluster are compared to show that clusters are constructed based on how many and which words of the model answer have been used. The main novelty in this paper is that we design a model to predict marks based on the similarities between the student answers and the model answer.



rate research

Read More

While most topic modeling algorithms model text corpora with unigrams, human interpretation often relies on inherent grouping of terms into phrases. As such, we consider the problem of discovering topical phrases of mixed lengths. Existing work either performs post processing to the inference results of unigram-based topic models, or utilizes complex n-gram-discovery topic models. These methods generally produce low-quality topical phrases or suffer from poor scalability on even moderately-sized datasets. We propose a different approach that is both computationally efficient and effective. Our solution combines a novel phrase mining framework to segment a document into single and multi-word phrases, and a new topic model that operates on the induced document partition. Our approach discovers high quality topical phrases with negligible extra cost to the bag-of-words topic model in a variety of datasets including research publication titles, abstracts, reviews, and news articles.
As one of the fundamental tasks in text analysis, phrase mining aims at extracting quality phrases from a text corpus. Phrase mining is important in various tasks such as information extraction/retrieval, taxonomy construction, and topic modeling. Most existing methods rely on complex, trained linguistic analyzers, and thus likely have unsatisfactory performance on text corpora of new domains and genres without extra but expensive adaption. Recently, a few data-driven methods have been developed successfully for extraction of phrases from massive domain-specific text. However, none of the state-of-the-art models is fully automated because they require human experts for designing rules or labeling phrases. Since one can easily obtain many quality phrases from public knowledge bases to a scale that is much larger than that produced by human experts, in this paper, we propose a novel framework for automated phrase mining, AutoPhrase, which leverages this large amount of high-quality phrases in an effective way and achieves better performance compared to limited human labeled phrases. In addition, we develop a POS-guided phrasal segmentation model, which incorporates the shallow syntactic information in part-of-speech (POS) tags to further enhance the performance, when a POS tagger is available. Note that, AutoPhrase can support any language as long as a general knowledge base (e.g., Wikipedia) in that language is available, while benefiting from, but not requiring, a POS tagger. Compared to the state-of-the-art methods, the new method has shown significant improvements in effectiveness on five real-world datasets across different domains and languages.
With the COVID-19 pandemic, there is a growing urgency for medical community to keep up with the accelerating growth in the new coronavirus-related literature. As a result, the COVID-19 Open Research Dataset Challenge has released a corpus of scholarly articles and is calling for machine learning approaches to help bridging the gap between the researchers and the rapidly growing publications. Here, we take advantage of the recent advances in pre-trained NLP models, BERT and OpenAI GPT-2, to solve this challenge by performing text summarization on this dataset. We evaluate the results using ROUGE scores and visual inspection. Our model provides abstractive and comprehensive information based on keywords extracted from the original articles. Our work can help the the medical community, by providing succinct summaries of articles for which the abstract are not already available.
Following detailed presentation of the Core Conflictual Relationship Theme (CCRT), there is the objective of relevant methods for what has been described as verbalization and visualization of data. Such is also termed data mining and text mining, and knowledge discovery in data. The Correspondence Analysis methodology, also termed Geometric Data Analysis, is shown in a case study to be comprehensive and revealing. Computational efficiency depends on how the analysis process is structured. For both illustrative and revealing aspects of the case study here, relatively extensive dream reports are used. This Geometric Data Analysis confirms the validity of CCRT method.
Mining a set of meaningful topics organized into a hierarchy is intuitively appealing since topic correlations are ubiquitous in massive text corpora. To account for potential hierarchical topic structures, hierarchical topic models generalize flat topic models by incorporating latent topic hierarchies into their generative modeling process. However, due to their purely unsupervised nature, the learned topic hierarchy often deviates from users particular needs or interests. To guide the hierarchical topic discovery process with minimal user supervision, we propose a new task, Hierarchical Topic Mining, which takes a category tree described by category names only, and aims to mine a set of representative terms for each category from a text corpus to help a user comprehend his/her interested topics. We develop a novel joint tree and text embedding method along with a principled optimization procedure that allows simultaneous modeling of the category tree structure and the corpus generative process in the spherical space for effective category-representative term discovery. Our comprehensive experiments show that our model, named JoSH, mines a high-quality set of hierarchical topics with high efficiency and benefits weakly-supervised hierarchical text classification tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا