No Arabic abstract
In this work we study the impact of chromatic focusing of few-cycle laser pulses on high-order harmonic generation (HHG) through analysis of the emitted extreme ultraviolet (XUV) radiation. Chromatic focusing is usually avoided in the few-cycle regime, as the pulse spatio-temporal structure may be highly distorted by the spatiotemporal aberrations. Here, however, we demonstrate it as an additional control parameter to modify the generated XUV radiation. We present experiments where few-cycle pulses are focused by a singlet lens in a Kr gas jet. The chromatic distribution of focal lengths allows us to tune HHG spectra by changing the relative singlet-target distance. Interestingly, we also show that the degree of chromatic aberration needed to this control does not degrade substantially the harmonic conversion efficiency, still allowing for the generation of supercontinua with the chirped-pulse scheme, demonstrated previously for achromatic focussing. We back up our experiments with theoretical simulations reproducing the experimental HHG results depending on diverse parameters (input pulse spectral phase, pulse duration, focus position) and proving that, under the considered parameters, the attosecond pulse train remains very similar to the achromatic case, even showing cases of isolated attosecond pulse generation for near single-cycle driving pulses.
Isolated attosecond pulses (IAPs) produced through laser-driven high-harmonic generation (HHG) hold promise for unprecedented insight into biological processes via attosecond x-ray diffraction with tabletop sources. However, efficient scaling of HHG towards x-ray energies has been hampered by ionization-induced plasma generation impeding the coherent buildup of high-harmonic radiation. Recently, it has been shown that these limitations can be overcome in the so-called overdriven regime where ionization loss and plasma dispersion strongly modify the driving laser pulse over small distances, albeit without demonstrating IAPs. Here, we report on experiments comparing the generation of IAPs in argon and neon at 80 eV via attosecond streaking measurements. Contrasting our experimental results with numerical simulations, we conclude that IAPs in argon are generated through ionization-induced transient phase-matching gating effective over distances on the order of 100 $mu$m. We show that the decay of the intensity and blue-shift due to plasma defocussing are crucial for allowing phase-matching close to the XUV cutoff at high plasma densities. We perform simulations for different gases and wavelengths and show that the mechanism is important for the phase-matching of long-wavelength, tightly-focused laser beams in high-pressure gas targets, which are currently being employed for scaling isolated attosecond pulse generation to x-ray photon energies.
In contrast to the case of quasi-monochromatic waves, a focused optical pulse in the few-cycle limit may exhibit two independent curved wavefronts, associated with phase and group retardations, respectively. Focusing optical elements will generally affect these two wavefronts differently, thus leading to very different behavior of the pulse near focus. As limiting cases, we consider an ideal diffractive lens introducing only phase retardations and a perfect non-dispersive refractive lens (or a curved mirror) introducing equal phase and group retardations. We study the resulting diffraction effects on the pulse, finding both strong deformations of the pulse shape and shifts in the spectrum. We then show how important these effects can be in highly nonlinear optics, by studying their role in attosecond pulse generation. In particular, the focusing effects are found to affect substantially the generation of isolated attosecond pulses in gases from few-cycle fundamental optical fields.
Sources of intense, ultra-short electromagnetic pulses enable applications such as attosecond pulse generation, control of electron motion in solids and the observation of reaction dynamics at the electronic level. For such applications both high-intensity and carrier envelope phase~(CEP) tunability are beneficial, yet hard to obtain with current methods. In this work we present a new scheme for generation of isolated CEP-tunable intense sub-cycle pulses with central frequencies that range from the midinfrared to the ultraviolet. It utilizes an intense laser pulse which drives a wake in a plasma, co-propagating with a long-wavelength seed pulse. The moving electron density spike of the wake amplifies the seed and forms a sub-cycle pulse. Controlling the CEP of the seed pulse, or the delay between driver and seed leads to CEP-tunability, while frequency tunability can be achieved by adjusting the laser and plasma parameters. Our 2D and 3D Particle-In-Cell simulations predict laser-to-sub-cycle-pulse conversion efficiencies up to 1%, resulting in relativistically intense sub-cycle pulses.
The ongoing development of intense high-harmonic generation (HHG) sources has recently enabled highly nonlinear ionization of atoms by the absorption of at least 10 extreme-ultraviolet (XUV) photons within a single atom [Senfftleben textit{et al.}, arXiv1911.01375]. Here we investigate the role that reshaping of the fundamental, few-cycle, near-infrared (NIR) driving laser within the 30-cm-long HHG Xe medium plays in the generation of the intense HHG pulses. Using an incident NIR intensity that is higher than what is required for phase-matched HHG, signatures of reshaping are found by measuring the NIR blueshift and the fluorescence from the HHG medium along the propagation axis. These results are well reproduced by numerical calculations that show temporal compression of the NIR pulses in the HHG medium. The simulations predict that after refocusing an XUV beam waist radius of 320 nm and a clean attosecond pulse train can be obtained in the focal plane, with an estimated XUV peak intensity of 9x10^15 W/cm^2. Our results show that XUV intensities that were previously only available at large-scale facilities can now be obtained using moderately powerful table-top light sources.
By analyzing ``exact theoretical results from solving the time-dependent Schrodinger equation of atoms in few-cycle laser pulses, we established the general conclusion that differential elastic scattering and photo-recombination cross sections of the target ion with {em free} electrons can be extracted accurately from laser-generated high-energy electron momentum spectra and high-order harmonic spectra, respectively. Since both electron scattering and photoionization (the inverse of photo-recombination) are the conventional means for interrogating the structure of atoms and molecules, this result shows that existing few-cycle infrared lasers can be implemented for ultrafast imaging of transient molecules with temporal resolution of a few femtoseconds.