Do you want to publish a course? Click here

Influence of generalized focusing of few-cycle Gaussian pulses in attosecond pulse generation

265   0   0.0 ( 0 )
 Added by Ebrahim Karimi
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In contrast to the case of quasi-monochromatic waves, a focused optical pulse in the few-cycle limit may exhibit two independent curved wavefronts, associated with phase and group retardations, respectively. Focusing optical elements will generally affect these two wavefronts differently, thus leading to very different behavior of the pulse near focus. As limiting cases, we consider an ideal diffractive lens introducing only phase retardations and a perfect non-dispersive refractive lens (or a curved mirror) introducing equal phase and group retardations. We study the resulting diffraction effects on the pulse, finding both strong deformations of the pulse shape and shifts in the spectrum. We then show how important these effects can be in highly nonlinear optics, by studying their role in attosecond pulse generation. In particular, the focusing effects are found to affect substantially the generation of isolated attosecond pulses in gases from few-cycle fundamental optical fields.



rate research

Read More

In this work we study the impact of chromatic focusing of few-cycle laser pulses on high-order harmonic generation (HHG) through analysis of the emitted extreme ultraviolet (XUV) radiation. Chromatic focusing is usually avoided in the few-cycle regime, as the pulse spatio-temporal structure may be highly distorted by the spatiotemporal aberrations. Here, however, we demonstrate it as an additional control parameter to modify the generated XUV radiation. We present experiments where few-cycle pulses are focused by a singlet lens in a Kr gas jet. The chromatic distribution of focal lengths allows us to tune HHG spectra by changing the relative singlet-target distance. Interestingly, we also show that the degree of chromatic aberration needed to this control does not degrade substantially the harmonic conversion efficiency, still allowing for the generation of supercontinua with the chirped-pulse scheme, demonstrated previously for achromatic focussing. We back up our experiments with theoretical simulations reproducing the experimental HHG results depending on diverse parameters (input pulse spectral phase, pulse duration, focus position) and proving that, under the considered parameters, the attosecond pulse train remains very similar to the achromatic case, even showing cases of isolated attosecond pulse generation for near single-cycle driving pulses.
Laser-plasma electron accelerators can be used to produce high-intensity X-rays, as electrons accelerated in wakefields emit radiation due to betatron oscillations.Such X-ray sources inherit the features of the electron beam; sub-femtosecond electron bunches produce betatron sources of the same duration, which in turn allow probing matter on ultrashort time scales. In this paper we show, via Particle-in-Cell simulations, that attosecond electron bunches can be obtained using low-energy, ultra-short laser beams both in the self-injection and the controlled injection regimes at low plasma densities. However, only in the controlled regime does the electron injection lead to a stable, isolated attosecond electron bunch. Such ultrashort electron bunches are shown to emit attosecond X-ray bursts with high brilliance
297 - T. Ruchon , C. P. Hauri , K. Varju 2007
We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of self-compressed attosecond pulses. We show this effect experimentally, using long argon-filled gas cells as generating medium.
A new method for efficiently generating an isolated single-cycle attosecond pulse is proposed. It is shown that the ultraviolet (UV) attosecond pulse can be utilized as a robust tool to control the dynamics of electron wave packets (EWPs). By adding a UV attosecond pulse to an infrared (IR) few-cycle pulse at a proper time, only one return of the EWP to the parent ion is selected to effectively contribute to the harmonics, then an isolated two-cycle 130-as pulse with a bandwidth of 45 eV is obtained. After complementing the chirp, an isolated single-cycle attosecond pulse with a duration less than 100 as seems achievable. In addition, the contribution of the quantum trajectories can be selected by adjusting the delay between the IR and UV fields. Using this method, the harmonic and attosecond pulse yields are efficiently enhanced in contrast to the scheme [G. Sansone {it et al.}, Science {bf314}, 443 (2006)] using a few-cycle IR pulse in combination with the polarization gating technique.
Sub-10-attosecond pulses with half-cycle electric fields provide exceptional options to detect and manipulate electrons in the atomic timescale. However, the availability of such pulses is still challenging. Here, we propose a method to generate isolated sub-10-attosecond half-cycle pulses based on a cascade process naturally happening in plasma. A 100s-attosecond pulse is first generated by shooting a moderate overdense plasma with a one-cycle femtosecond pulse. After that, the generated attosecond pulse cascadedly produce a sub-10-attosecond half-cycle pulse in the transmission direction by unipolarly perturbing a nanometer-thin relativistic electron sheet naturally form in the plasma. Two-dimensional particle-in-cell simulations indicate that an isolated half-cycle pulse with the duration of 8.3 attoseconds can be produced. Apart from one-cycle driving pulse, such a scheme also can be realized with a commercial 100-TW 25-fs driving laser by shaping the pulse with a relativistic plasma lens in advance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا