Do you want to publish a course? Click here

Fuzzy Based Implicit Sentiment Analysis on Quantitative Sentences

393   0   0.0 ( 0 )
 Added by Amir Yazdavar
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

With the rapid growth of social media on the web, emotional polarity computation has become a flourishing frontier in the text mining community. However, it is challenging to understand the latest trends and summarize the state or general opinions about products due to the big diversity and size of social media data and this creates the need of automated and real time opinion extraction and mining. On the other hand, the bulk of current research has been devoted to study the subjective sentences which contain opinion keywords and limited work has been reported for objective statements that imply sentiment. In this paper, fuzzy based knowledge engineering model has been developed for sentiment classification of special group of such sentences including the change or deviation from desired range or value. Drug reviews are the rich source of such statements. Therefore, in this research, some experiments were carried out on patients reviews on several different cholesterol lowering drugs to determine their sentiment polarity. The main conclusion through this study is, in order to increase the accuracy level of existing drug opinion mining systems, objective sentences which imply opinion should be taken into account. Our experimental results demonstrate that our proposed model obtains over 72 percent F1 value.



rate research

Read More

With the development of the E-commerce and reviews website, the comment information is influencing peoples life. More and more users share their consumption experience and evaluate the quality of commodity by comment. When people make a decision, they will refer these comments. The dependency of the comments make the fake comment appear. The fake comment is that for profit and other bad motivation, business fabricate untrue consumption experience and they preach or slander some products. The fake comment is easy to mislead users opinion and decision. The accuracy of humans identifying fake comment is low. Its meaningful to detect fake comment using natural language processing technology for people getting true comment information. This paper uses the sentimental analysis to detect fake comment.
Recent neural-based aspect-based sentiment analysis approaches, though achieving promising improvement on benchmark datasets, have reported suffering from poor robustness when encountering confounder such as non-target aspects. In this paper, we take a causal view to addressing this issue. We propose a simple yet effective method, namely, Sentiment Adjustment (SENTA), by applying a backdoor adjustment to disentangle those confounding factors. Experimental results on the Aspect Robustness Test Set (ARTS) dataset demonstrate that our approach improves the performance while maintaining accuracy in the original test set.
Previous researchers have considered sentiment analysis as a document classification task, in which input documents are classified into predefined sentiment classes. Although there are sentences in a document that support important evidences for sentiment analysis and sentences that do not, they have treated the document as a bag of sentences. In other words, they have not considered the importance of each sentence in the document. To effectively determine polarity of a document, each sentence in the document should be dealt with different degrees of importance. To address this problem, we propose a document-level sentence classification model based on deep neural networks, in which the importance degrees of sentences in documents are automatically determined through gate mechanisms. To verify our new sentiment analysis model, we conducted experiments using the sentiment datasets in the four different domains such as movie reviews, hotel reviews, restaurant reviews, and music reviews. In the experiments, the proposed model outperformed previous state-of-the-art models that do not consider importance differences of sentences in a document. The experimental results show that the importance of sentences should be considered in a document-level sentiment classification task.
It is very current in today life to seek for tracking the people opinion from their interaction with occurring events. A very common way to do that is comments in articles published in newspapers web sites dealing with contemporary events. Sentiment analysis or opinion mining is an emergent field who is the purpose is finding the behind phenomenon masked in opinionated texts. We are interested in our work by comments in Algerian newspaper websites. For this end, two corpora were used SANA and OCA. SANA corpus is created by collection of comments from three Algerian newspapers, and annotated by two Algerian Arabic native speakers, while OCA is a freely available corpus for sentiment analysis. For the classification we adopt Supports vector machines, naive Bayes and knearest neighbors. Obtained results are very promising and show the different effects of stemming in such domain, also knearest neighbors give important improvement comparing to other classifiers unlike similar works where SVM is the most dominant. From this study we observe the importance of dedicated resources and methods the newspaper comments sentiment analysis which we look forward in future works.
Recent studies in big data analytics and natural language processing develop automatic techniques in analyzing sentiment in the social media information. In addition, the growing user base of social media and the high volume of posts also provide valuable sentiment information to predict the price fluctuation of the cryptocurrency. This research is directed to predicting the volatile price movement of cryptocurrency by analyzing the sentiment in social media and finding the correlation between them. While previous work has been developed to analyze sentiment in English social media posts, we propose a method to identify the sentiment of the Chinese social media posts from the most popular Chinese social media platform Sina-Weibo. We develop the pipeline to capture Weibo posts, describe the creation of the crypto-specific sentiment dictionary, and propose a long short-term memory (LSTM) based recurrent neural network along with the historical cryptocurrency price movement to predict the price trend for future time frames. The conducted experiments demonstrate the proposed approach outperforms the state of the art auto regressive based model by 18.5% in precision and 15.4% in recall.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا