Do you want to publish a course? Click here

Efficient iterative policy optimization

71   0   0.0 ( 0 )
 Added by Nicolas Le Roux
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We tackle the issue of finding a good policy when the number of policy updates is limited. This is done by approximating the expected policy reward as a sequence of concave lower bounds which can be efficiently maximized, drastically reducing the number of policy updates required to achieve good performance. We also extend existing methods to negative rewards, enabling the use of control variates.

rate research

Read More

In Goal-oriented Reinforcement learning, relabeling the raw goals in past experience to provide agents with hindsight ability is a major solution to the reward sparsity problem. In this paper, to enhance the diversity of relabeled goals, we develop FGI (Foresight Goal Inference), a new relabeling strategy that relabels the goals by looking into the future with a learned dynamics model. Besides, to improve sample efficiency, we propose to use the dynamics model to generate simulated trajectories for policy training. By integrating these two improvements, we introduce the MapGo framework (Model-Assisted Policy Optimization for Goal-oriented tasks). In our experiments, we first show the effectiveness of the FGI strategy compared with the hindsight one, and then show that the MapGo framework achieves higher sample efficiency when compared to model-free baselines on a set of complicated tasks.
We study worst-case guarantees on the expected return of fixed-dataset policy optimization algorithms. Our core contribution is a unified conceptual and mathematical framework for the study of algorithms in this regime. This analysis reveals that for naive approaches, the possibility of erroneous value overestimation leads to a difficult-to-satisfy requirement: in order to guarantee that we select a policy which is near-optimal, we may need the dataset to be informative of the value of every policy. To avoid this, algorithms can follow the pessimism principle, which states that we should choose the policy which acts optimally in the worst possible world. We show why pessimistic algorithms can achieve good performance even when the dataset is not informative of every policy, and derive families of algorithms which follow this principle. These theoretical findings are validated by experiments on a tabular gridworld, and deep learning experiments on four MinAtar environments.
Biopharmaceutical manufacturing is a rapidly growing industry with impact in virtually all branches of medicine. Biomanufacturing processes require close monitoring and control, in the presence of complex bioprocess dynamics with many interdependent factors, as well as extremely limited data due to the high cost and long duration of experiments. We develop a novel model-based reinforcement learning framework that can achieve human-level control in low-data environments. The model uses a probabilistic knowledge graph to capture causal interdependencies between factors in the underlying stochastic decision process, leveraging information from existing kinetic models from different unit operations while incorporating real-world experimental data. We then present a computationally efficient, provably convergent stochastic gradient method for policy optimization. Validation is conducted on a realistic application with a multi-dimensional, continuous state variable.
Deploying Reinforcement Learning (RL) agents in the real-world require that the agents satisfy safety constraints. Current RL agents explore the environment without considering these constraints, which can lead to damage to the hardware or even other agents in the environment. We propose a new method, LBPO, that uses a Lyapunov-based barrier function to restrict the policy update to a safe set for each training iteration. Our method also allows the user to control the conservativeness of the agent with respect to the constraints in the environment. LBPO significantly outperforms state-of-the-art baselines in terms of the number of constraint violations during training while being competitive in terms of performance. Further, our analysis reveals that baselines like CPO and SDDPG rely mostly on backtracking to ensure safety rather than safe projection, which provides insight into why previous methods might not have effectively limit the number of constraint violations.
Deterministic-policy actor-critic algorithms for continuous control improve the actor by plugging its actions into the critic and ascending the action-value gradient, which is obtained by chaining the actors Jacobian matrix with the gradient of the critic with respect to input actions. However, instead of gradients, the critic is, typically, only trained to accurately predict expected returns, which, on their own, are useless for policy optimization. In this paper, we propose MAGE, a model-based actor-critic algorithm, grounded in the theory of policy gradients, which explicitly learns the action-value gradient. MAGE backpropagates through the learned dynamics to compute gradient targets in temporal difference learning, leading to a critic tailored for policy improvement. On a set of MuJoCo continuous-control tasks, we demonstrate the efficiency of the algorithm in comparison to model-free and model-based state-of-the-art baselines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا