Do you want to publish a course? Click here

How to Learn a Useful Critic? Model-based Action-Gradient-Estimator Policy Optimization

306   0   0.0 ( 0 )
 Added by Pierluca D'Oro
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deterministic-policy actor-critic algorithms for continuous control improve the actor by plugging its actions into the critic and ascending the action-value gradient, which is obtained by chaining the actors Jacobian matrix with the gradient of the critic with respect to input actions. However, instead of gradients, the critic is, typically, only trained to accurately predict expected returns, which, on their own, are useless for policy optimization. In this paper, we propose MAGE, a model-based actor-critic algorithm, grounded in the theory of policy gradients, which explicitly learns the action-value gradient. MAGE backpropagates through the learned dynamics to compute gradient targets in temporal difference learning, leading to a critic tailored for policy improvement. On a set of MuJoCo continuous-control tasks, we demonstrate the efficiency of the algorithm in comparison to model-free and model-based state-of-the-art baselines.



rate research

Read More

Actor-critic (AC) methods are ubiquitous in reinforcement learning. Although it is understood that AC methods are closely related to policy gradient (PG), their precise connection has not been fully characterized previously. In this paper, we explain the gap between AC and PG methods by identifying the exact adjustment to the AC objective/gradient that recovers the true policy gradient of the cumulative reward objective (PG). Furthermore, by viewing the AC method as a two-player Stackelberg game between the actor and critic, we show that the Stackelberg policy gradient can be recovered as a special case of our more general analysis. Based on these results, we develop practical algorithms, Residual Actor-Critic and Stackelberg Actor-Critic, for estimating the correction between AC and PG and use these to modify the standard AC algorithm. Experiments on popular tabular and continuous environments show the proposed corrections can improve both the sample efficiency and final performance of existing AC methods.
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension, making it challenging to apply existing on-policy gradient based deep RL algorithms efficiently. To effectively operate in multidimensional discrete action spaces, we construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation. We follow rigorous statistical analysis to design how to generate and combine these correlated actions, and how to sparsify the gradients by shutting down the contributions from certain dimensions. These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques. We demonstrate these properties on OpenAI Gym benchmark tasks, and illustrate how discretizing the action space could benefit the exploration phase and hence facilitate convergence to a better local optimal solution thanks to the flexibility of discrete policy.
Maintaining the stability of the modern power grid is becoming increasingly difficult due to fluctuating power consumption, unstable power supply coming from renewable energies, and unpredictable accidents such as man-made and natural disasters. As the operation on the power grid must consider its impact on future stability, reinforcement learning (RL) has been employed to provide sequential decision-making in power grid management. However, existing methods have not considered the environmental constraints. As a result, the learned policy has risk of selecting actions that violate the constraints in emergencies, which will escalate the issue of overloaded power lines and lead to large-scale blackouts. In this work, we propose a novel method for this problem, which builds on top of the search-based planning algorithm. At the planning stage, the search space is limited to the action set produced by the policy. The selected action strictly follows the constraints by testing its outcome with the simulation function provided by the system. At the learning stage, to address the problem that gradients cannot be propagated to the policy, we introduce Evolutionary Strategies (ES) with black-box policy optimization to improve the policy directly, maximizing the returns of the long run. In NeurIPS 2020 Learning to Run Power Network (L2RPN) competition, our solution safely managed the power grid and ranked first in both tracks.
Deep learning models require extensive architecture design exploration and hyperparameter optimization to perform well on a given task. The exploration of the model design space is often made by a human expert, and optimized using a combination of grid search and search heuristics over a large space of possible choices. Neural Architecture Search (NAS) is a Reinforcement Learning approach that has been proposed to automate architecture design. NAS has been successfully applied to generate Neural Networks that rival the best human-designed architectures. However, NAS requires sampling, constructing, and training hundreds to thousands of models to achieve well-performing architectures. This procedure needs to be executed from scratch for each new task. The application of NAS to a wide set of tasks currently lacks a way to transfer generalizable knowledge across tasks. In this paper, we present the Multitask Neural Model Search (MNMS) controller. Our goal is to learn a generalizable framework that can condition model construction on successful model searches for previously seen tasks, thus significantly speeding up the search for new tasks. We demonstrate that MNMS can conduct an automated architecture search for multiple tasks simultaneously while still learning well-performing, specialized models for each task. We then show that pre-trained MNMS controllers can transfer learning to new tasks. By leveraging knowledge from previous searches, we find that pre-trained MNMS models start from a better location in the search space and reduce search time on unseen tasks, while still discovering models that outperform published human-designed models.
In many sequential decision making tasks, it is challenging to design reward functions that help an RL agent efficiently learn behavior that is considered good by the agent designer. A number of different formulations of the reward-design problem, or close variants thereof, have been proposed in the literature. In this paper we build on the Optimal Rewards Framework of Singh et.al. that defines the optimal intrinsic reward function as one that when used by an RL agent achieves behavior that optimizes the task-specifying or extrinsic reward function. Previous work in this framework has shown how good intrinsic reward functions can be learned for lookahead search based planning agents. Whether it is possible to learn intrinsic reward functions for learning agents remains an open problem. In this paper we derive a novel algorithm for learning intrinsic rewards for policy-gradient based learning agents. We compare the performance of an augmented agent that uses our algorithm to provide additive intrinsic rewards to an A2C-based policy learner (for Atari games) and a PPO-based policy learner (for Mujoco domains) with a baseline agent that uses the same policy learners but with only extrinsic rewards. Our results show improved performance on most but not all of the domains.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا