Do you want to publish a course? Click here

Discovery of XO-6b: a hot Jupiter transiting a fast rotating F5 star on an oblique orbit

73   0   0.0 ( 0 )
 Added by Nicolas Crouzet
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Only a few hot Jupiters are known to orbit around fast rotating stars. These exoplanets are harder to detect and characterize and may be less common than around slow rotators. Here, we report the discovery of the transiting hot Jupiter XO-6b, which orbits a bright, hot, and fast rotating star: V = 10.25, Teff = 6720 +/- 100 K, v sin i = 48 +/- 3 km/s. We detected the planet from its transits using the XO instruments and conducted a follow-up campaign. Because of the fast stellar rotation, radial velocities taken along the orbit do not yield the planets mass with a high confidence level, but we secure a 3-sigma upper limit Mp < 4.4 MJup. We also obtain high resolution spectroscopic observations of the transit with the SOPHIE spectrograph at the 193-cm telescope of the Observatoire de Haute-Provence and analyze the stellar lines profile by Doppler tomography. The transit is clearly detected in the spectra. The radii measured independently from the tomographic analysis and from the photometric lightcurves are consistent, showing that the object detected by both methods is the same and indeed transits in front of XO-6. We find that XO-6b lies on a prograde and misaligned orbit with a sky-projected obliquity lambda = -20.7 +/- 2.3 deg. The rotation period of the star is shorter than the orbital period of the planet: Prot < 2.12 days, Porb = 3.77 days. Thus, this system stands in a largely unexplored regime of dynamical interactions between close-in giant planets and their host stars.



rate research

Read More

We report the discovery of HAT-P-30b, a transiting exoplanet orbiting the V=10.419 dwarf star GSC 0208-00722. The planet has a period P=2.810595+/-0.000005 d, transit epoch Tc = 2455456.46561+/-0.00037 (BJD), and transit duration 0.0887+/-0.0015 d. The host star has a mass of 1.24+/-0.04 Msun, radius of 1.21+/-0.05 Rsun, effective temperature 6304+/-88 K, and metallicity [Fe/H] = +0.13+/-0.08. The planetary companion has a mass of 0.711+/-0.028 Mjup, and radius of 1.340+/-0.065 Rjup yielding a mean density of 0.37+/-0.05 g cm^-3. We also present radial velocity measurements that were obtained throughout a transit that exhibit the Rossiter-McLaughlin effect. By modeling this effect we measure an angle of lambda = 73.5+/-9.0 deg between the sky projections of the planets orbit normal and the stars spin axis. HAT-P-30b represents another example of a close-in planet on a highly tilted orbit, and conforms to the previously noted pattern that tilted orbits are more common around stars with Teff > 6250 K.
Transiting planets orbiting bright stars are the most favorable targets for follow-up and characterization. We report the discovery of the transiting hot Jupiter XO-7 b and of a second, massive companion on a wide orbit around a circumpolar, bright, and metal rich G0 dwarf (V = 10.52, $T_{rm eff} = 6250 pm 100 ; rm K$, $rm[Fe/H] = 0.432 pm 0.057 ; rm dex$). We conducted photometric and radial velocity follow-up with a team of amateur and professional astronomers. XO-7 b has a period of $ 2.8641424 pm 0.0000043$ days, a mass of $0.709 pm 0.034 ; rm M_{rm J}$, a radius of $1.373 pm 0.026 ; rm R_{rm J}$, a density of $0.340 pm 0.027 ; rm g , {cm}^{-3}$, and an equilibrium temperature of $1743 pm 23 ; rm K$. Its large atmospheric scale height and the brightness of the host star make it well suited to atmospheric characterization. The wide orbit companion is detected as a linear trend in radial velocities with an amplitude of $sim100 ; rm m , {s}^{-1}$ over two years, yielding a minimum mass of $4 ; rm M_{rm J}$; it could be a planet, a brown dwarf, or a low mass star. The hot Jupiter orbital parameters and the presence of the wide orbit companion point towards a high eccentricity migration for the hot Jupiter. Overall, this system will be valuable to understand the atmospheric properties and migration mechanisms of hot Jupiters and will help constrain the formation and evolution models of gas giant exoplanets.
The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a `hot Jupiter planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high $^7$Li abundance. While thelightcurveindicatesamuchhigherlevelof activity than, e.g., the Sun, there is no sign of activity spectroscopically in e.g., the [Ca ] H&K lines.
We report the discovery of MASCARA-3b, a hot Jupiter orbiting its bright (V = 8.33) late F-type host every $5.55149pm 0.00001$ days in an almost circular orbit ($e = 0.050^{+0.020}_{-0.017}$). This is the fourth exoplanet discovered with the Multi-site All-Sky CAmeRA (MASCARA), and the first of these that orbits a late-type star. Follow-up spectroscopic measurements were obtained in and out of transit with the Hertzsprung SONG telescope. Combining the MASCARA photometry and SONG radial velocities reveals a radius and mass of $1.36pm 0.05$ $R_{text{Jup}}$ and $4.2pm 0.2$ $M_{text{Jup}}$. In addition, SONG spectroscopic transit observations were obtained on two separate nights. From analyzing the mean out-of-transit broadening function, we obtain $vsin i_{star} = 20.4pm 0.4$ km s$^{-1}$. In addition, investigating the Rossiter-McLaughlin effect, as observed in the distortion of the stellar lines directly and through velocity anomalies, we find the projected obliquity to be $lambda = 1.2^{+8.2}_{-7.4}$ deg, which is consistent with alignment.
404 - R. W. Noyes 2008
In the ongoing HATNet survey we have detected a giant planet, with radius 1.33 +/- 0.06 RJup and mass 1.06 +/- 0.12 MJup, transiting the bright (V = 10.5) star GSC 03239-00992. The planet is in a circular orbit with period 3.852985 +/- 0.000005 days and mid-transit epoch 2,454,035.67575 +/- 0.00028 (HJD). The parent star is a late F star with mass 1.29 +/- 0.06 Msun, radius 1.46 +/- 0.06 Rsun, Teff ~ 6570 +/- 80 K, [Fe=H] = -0.13 +/- 0.08 and age ~ 2.3+/-^{0.5}_{0.7}Gy. With this radius and mass, HAT-P-6b has somewhat larger radius than theoretically expected. We describe the observations and their analysis to determine physical properties of the HAT-P-6 system, and briefly discuss some implications of this finding.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا