Do you want to publish a course? Click here

Localizing High-Lying Rydberg Wave Packets with Two-Color Laser Fields

83   0   0.0 ( 0 )
 Added by Xinhua Xie Dr.
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate control over the localization of high-lying Rydberg wave packets in argon atoms with phase-locked orthogonally polarized two-color (OTC) laser fields. With a reaction microscope, we measured ionization signals of high-lying Rydberg states induced by a weak dc field and black-body radiation as a function of the relative phase between the two-color fields. We find that the dc-field ionization yields of high-lying Rydberg argon atoms oscillate with the relative two-color phase with a period of $2pi$ while the photoionization signal by black-body radiation shows a period of $pi$. These observations are a clear signature of the asymmetric localization of electrons recaptured into high-lying Rydberg states after conclusion of the laser pulse and are supported by a semiclassical simulation of argon-OTC laser interaction. Our findings thus open an effective pathway to control the localization of high-lying Rydberg wave packets.



rate research

Read More

We report on non-sequential double ionization of Ar by a laser pulse consisting of two counter rotating circularly polarized fields (390 nm and 780 nm). The double ionization probability depends strongly on the relative intensity of the two fields and shows a knee-like structure as function of intensity. We conclude that double ionization is driven by a beam of nearly monoenergetic recolliding electrons, which can be controlled in intensity and energy by the field parameters. The electron momentum distributions show the recolliding electron as well as a second electron which escapes from an intermediate excited state of Ar$^+$.
Non dispersive electronic Rydberg wave packets may be created in atoms illuminated by a microwave field of circular polarization. We discuss the spontaneous emission from such states and show that the elastic incoherent component (occuring at the frequency of the driving field) dominates the spectrum in the semiclassical limit, contrary to earlier predictions. We calculate the frequencies of single photon emissions and the associated rates in the harmonic approximation, i.e. when the wave packet has approximately a Gaussian shape. The results agree well with exact quantum mechanical calculations, which validates the analytical approach.
118 - Shilin Hu , Xiaolei Hao , Hang Lv 2019
Neutral atoms have been observed to survive intense laser pulses in high Rydberg states with surprisingly large probability. Only with this Rydberg-state excitation (RSE) included is the picture of intense-laser-atom interaction complete. Various mechanisms have been proposed to explain the underlying physics. However, neither one can explain all the features observed in experiments and in time-dependent Schr{o}dinger equation (TDSE) simulations. Here we propose a fully quantum-mechanical model based on the strong-field approximation (SFA). It well reproduces the intensity dependence of RSE obtained by the TDSE, which exhibits a series of modulated peaks. They are due to recapture of the liberated electron and the fact that the pertinent probability strongly depends on the position and the parity of the Rydberg state. We also present measurements of RSE in xenon at 800 nm, which display the peak structure consistent with the calculations.
We demonstrate significant enhancement of frustrated double ionization (FDI) in the two-electron triatomic molecule D$_{3}^{+}$ when driven by counter-rotating two-color circular (CRTC) laser fields. We employ a three-dimensional semiclassical model that fully accounts for electron and nuclear motion in strong fields. For different pairs of wavelengths, we compute the probabilities of the FDI pathways as a function of the ratio of the two field-strengths. We identify a pathway of frustrated double ionization that is not present in strongly-driven molecules with linear fields. In this pathway the first ionization step is frustrated and electronic correlation is essentially absent. This pathway is responsible for enhancing frustrated double ionization with CRTC fields. We also employ a simple model that predicts many of the main features of the probabilities of the FDI pathways as a function of the ratio of the two field-strengths.
We report the experimental observation of strong two-color optical nonlinearity in an ultracold gas of $^{85}mathrm{Rb}$-$^{87}mathrm{Rb}$ atom mixture. By simultaneously coupling two probe transitions of $^{85}$Rb and $^{87}$Rb atoms to Rydberg states in electromagnetically induced transparency (EIT) configurations, we observe significant suppression of the transparency resonance for one probe field when the second probe field is detuned at $sim1~mathrm{GHz}$ and hitting the EIT resonance of the other isotope. Such a cross-absorption modulation to the beam propagation dynamics can be described by two coupled nonlinear wave equations we develope. We further demonstrate that the two-color optical nonlinearity can be tuned by varying the density ratio of different atomic isotopes, which highlights its potential for exploring strongly interacting multi-component fluids of light.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا