Do you want to publish a course? Click here

Two-Color Optical Nonlinearity in an Ultracold Rydberg Atom Gas Mixture

76   0   0.0 ( 0 )
 Added by Fan Yang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the experimental observation of strong two-color optical nonlinearity in an ultracold gas of $^{85}mathrm{Rb}$-$^{87}mathrm{Rb}$ atom mixture. By simultaneously coupling two probe transitions of $^{85}$Rb and $^{87}$Rb atoms to Rydberg states in electromagnetically induced transparency (EIT) configurations, we observe significant suppression of the transparency resonance for one probe field when the second probe field is detuned at $sim1~mathrm{GHz}$ and hitting the EIT resonance of the other isotope. Such a cross-absorption modulation to the beam propagation dynamics can be described by two coupled nonlinear wave equations we develope. We further demonstrate that the two-color optical nonlinearity can be tuned by varying the density ratio of different atomic isotopes, which highlights its potential for exploring strongly interacting multi-component fluids of light.



rate research

Read More

We present measurements of interspecies thermalization between ultracold samples of $^{133}$Cs and either $^{174}$Yb or $^{170}$Yb. The two species are trapped in a far-off-resonance optical dipole trap and $^{133}$Cs is sympathetically cooled by Yb. We extract effective interspecies thermalization cross sections by fitting the thermalization measurements to a rate equation model, giving $sigma_{mathrm{Cs^{174}Yb}} = left(5 pm 2right) times 10^{-13} , mathrm{cm^{2}}$ and $sigma_{mathrm{Cs^{170}Yb}} = left(18 pm 8right) times 10^{-13} , mathrm{cm^{2}}$. We perform quantum scattering calculations of the thermalization cross sections and optimize the CsYb interaction potential to reproduce the measurements. We predict scattering lengths for all isotopic combinations of Cs and Yb. We also demonstrate the independent production of $^{174}$Yb and $^{133}$Cs Bose-Einstein condensates using the same optical dipole trap, an important step towards the realization of a quantum-degenerate mixture of the two species.
The ability to control and tune interactions in ultracold atomic gases has paved the way towards the realization of new phases of matter. Whereas experiments have so far achieved a high degree of control over short-ranged interactions, the realization of long-range interactions would open up a whole new realm of many-body physics and has become a central focus of research. Rydberg atoms are very well-suited to achieve this goal, as the van der Waals forces between them are many orders of magnitude larger than for ground state atoms. Consequently, the mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example are quantum crystals, composed of coherent superpositions of different spatially ordered configurations of collective excitations. Here we report on the direct measurement of strong correlations in a laser excited two-dimensional atomic Mott insulator using high-resolution, in-situ Rydberg atom imaging. The observations reveal the emergence of spatially ordered excitation patterns in the high-density components of the prepared many-body state. They have random orientation, but well defined geometry, forming mesoscopic crystals of collective excitations delocalised throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realise exotic phases of matter, thereby laying the basis for quantum simulations of long-range interacting quantum magnets.
We characterize the two-photon excitation of an ultracold gas of Rubidium atoms to Rydberg states analysing the induced atomic losses from an optical dipole trap. Extending the duration of the Rydberg excitation to several ms, the ground state atoms are continuously coupled to the formed positively charged plasma. In this regime we measure the $n$-dependence of the blockade effect and we characterise the interaction of the excited states and the ground state with the plasma. We also investigate the influence of the quasi-electrostatic trapping potential on the system, confirming the validity of the ponderomotive model for states with $20leq nleq 120$.
We present a quantum many-body description of the excitation spectrum of Rydberg polarons in a Bose gas. The many-body Hamiltonian is solved with functional determinant theory, and we extend this technique to describe Rydberg polarons of finite mass. Mean-field and classical descriptions of the spectrum are derived as approximations of the many-body theory. The various approaches are applied to experimental observations of polarons created by excitation of Rydberg atoms in a strontium Bose-Einstein condensate.
We demonstrate the interaction-induced blockade effect in an ultracold $^{88}$Sr gas via studying the time dynamics of a two-photon excitation to the triplet Rydberg series $5mathrm{s}nmathrm{s}, ^3textrm{S}_1$ for five different principle quantum numbers $n$ ranging from 19 to 37. By using a multi-pulse excitation sequence to increase the detection sensitivity we could identify Rydberg-excitation-induced atom losses as low as $<1%$. Based on an optical Bloch equation formalism, treating the Rydberg-Rydberg interaction on a mean-field level, the van der Waals coefficients are extracted from the observed dynamics, which agree fairly well with emph{ab initio} calculations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا