No Arabic abstract
Given an ideal $I=(f_1,ldots,f_r)$ in $mathbb C[x_1,ldots,x_n]$ generated by forms of degree $d$, and an integer $k>1$, how large can the ideal $I^k$ be, i.e., how small can the Hilbert function of $mathbb C[x_1,ldots,x_n]/I^k$ be? If $rle n$ the smallest Hilbert function is achieved by any complete intersection, but for $r>n$, the question is in general very hard to answer. We study the problem for $r=n+1$, where the result is known for $k=1$. We also study a closely related problem, the Weak Lefschetz property, for $S/I^k$, where $I$ is the ideal generated by the $d$th powers of the variables.
We determine a sharp lower bound for the Hilbert function in degree $d$ of a monomial algebra failing the weak Lefschetz property over a polynomial ring with $n$ variables and generated in degree $d$, for any $dgeq 2$ and $ngeq 3$. We consider artinian ideals in the polynomial ring with $n$ variables generated by homogeneous polynomials of degree $d$ invariant under an action of the cyclic group $mathbb{Z}/dmathbb{Z}$, for any $ngeq 3$ and any $dgeq 2$. We give a complete classification of such ideals in terms of the weak Lefschetz property depending on the action.
We settle a conjecture by Migliore, Miro-Roig, and Nagel which gives a classification of the Weak Lefschetz property for almost complete intersections generated by uniform powers of general linear forms.
Let $A = K[X_1,ldots, X_d]$ and let $I$, $J$ be monomial ideals in $A$. Let $I_n(J) = (I^n colon J^infty)$ be the $n^{th}$ symbolic power of $I$ wrt $J$. It is easy to see that the function $f^I_J(n) = e_0(I_n(J)/I^n)$ is of quasi-polynomial type, say of period $g$ and degree $c$. For $n gg 0$ say [ f^I_J(n) = a_c(n)n^c + a_{c-1}(n)n^{c-1} + text{lower terms}, ] where for $i = 0, ldots, c$, $a_i colon mathbb{N} rt mathbb{Z}$ are periodic functions of period $g$ and $a_c eq 0$. In an earlier paper we (together with Herzog and Verma) proved that $dim I_n(J)/I^n$ is constant for $n gg 0$ and $a_c(-)$ is a constant. In this paper we prove that if $I$ is generated by some elements of the same degree and height $I geq 2$ then $a_{c-1}(-)$ is also a constant.
This paper is concerned with the question of whether geometric structures such as cell complexes can be used to simultaneously describe the minimal free resolutions of all powers of a monomial ideal. We provide a full answer in the case of square-free monomial ideals of projective dimension one, by introducing a combinatorial construction of a family of (cubical) cell complexes whose 1-skeletons are powers of a graph that supports the resolution of the ideal.
Let $S=K[x_1,ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$ and $Isubset S$ a squarefree monomial ideal. In the present paper we are interested in the monomials $u in S$ belonging to the socle $Soc(S/I^{k})$ of $S/I^{k}$, i.e., $u otin I^{k}$ and $ux_{i} in I^{k}$ for $1 leq i leq n$. We prove that if a monomial $x_1^{a_1}cdots x_n^{a_n}$ belongs to $Soc(S/I^{k})$, then $a_ileq k-1$ for all $1 leq i leq n$. We then discuss squarefree monomial ideals $I subset S$ for which $x_{[n]}^{k-1} in Soc(S/I^{k})$, where $x_{[n]} = x_{1}x_{2}cdots x_{n}$. Furthermore, we give a combinatorial characterization of finite graphs $G$ on $[n] = {1, ldots, n}$ for which $depth S/(I_{G})^{2}=0$, where $I_{G}$ is the edge ideal of $G$.