Do you want to publish a course? Click here

Production of proton-rich nuclei around Z=84-90 in fusion-evaporation reactions

74   0   0.0 ( 0 )
 Added by Zhaoqing Feng
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Within the framework of the dinuclear system model, production cross sections of proton-rich nuclei with charged numbers of Z=84-90 are investigated systematically. Possible combinations with the $^{28}$Si, $^{32}$S, $^{40}$Ar bombarding the target nuclides $^{165}$Ho, $^{169}$Tm, $^{170-174}$Yb, $^{175,176}$Lu, $^{174,176-180}$Hf and $^{181}$Ta are analyzed thoroughly. The optimal excitation energies and evaporation channels are proposed to produce the proton-rich nuclei. The systems are feasible to be constructed in experiments. It is found that the neutron shell closure of N=126 is of importance during the evaporation of neutrons. The experimental excitation functions in the $^{40}$Ar induced reactions can be nicely reproduced. The charged particle evaporation is comparable with neutrons in cooling the excited proton-rich nuclei, in particular for the channels with $alpha$ and proton evaporation. The production cross section increases with the mass asymmetry of colliding systems because of the decrease of the inner fusion barrier. The channels with pure neutron evaporation depend on the isotopic targets. But it is different for the channels with charged particles and more sensitive to the odd-even effect.



rate research

Read More

The fusion dynamics on the formation of superheavy nuclei is investigated thoroughly within the dinuclear system model. The Monte Carlo approach is implemented into the nucleon transfer process for including all possible orientations, at which the dinuclear system is assumed to be formed at the touching configuration of dinuclear fragments. The production cross sections of superheavy nuclei Cn, Fl, Lv, Ts and Og are calculated and compared with the available data from Dubna. The evaporation residue excitation functions in the channels of pure neutrons and charged particles are analyzed systematically. The combinations with $^{44}$Sc, $^{48,50}$Ti, $^{49,51}$V, $^{52,54}$Cr, $^{58,62}$Fe and $^{62,64}$Ni bombarding the actinide nuclides $^{238}$U, $^{244}$Pu, $^{248}$Cm, $^{247,249}$Bk, $^{249,251}$Cf, $^{252}$Es and $^{243}$Am are calculated for producing the superheavy elements with Z=119-122. It is found that the production cross sections sensitively depend on the neutron richness of reaction system. The structure of evaporation residue excitation function is related to the neutron separation energy and fission barrier of compound nucleus.
250 - Cheng Peng , Zhao-Qing Feng 2021
Within the framework of the dinuclear system model, the production mechanism of neutron-rich heavy nuclei around N = 162 has been investigated systematically. The isotopic yields in the multinucleon transfer reaction of $^{238}$U + $^{248}$Cm was analyzed and compared the available experimental data. Systematics on the production of superheavy nuclei via $^{238}$U on $^{252,254}$Cf, $^{254}$Es and $^{257}$Fm is investigated. It is found that the shell effect is of importance in the formation of neutron-rich nuclei around N=162 owing to the enhancement of fission barrier. The fragments in the multinucleon transfer reactions manifest the broad isotopic distribution and are dependent on the beam energy. The polar angles of the fragments tend to the forward emission with increasing the beam energy. The production cross sections of new isotopes are estimated and heavier targets are available for the neutron-rich superheavy nucleus formation. The optimal system and beam energy are proposed for the future experimental measurements.
445 - Ning Wang , Li Ou , Yingxun Zhang 2014
The heavy-ion fusion reactions induced by neutron-rich nuclei are investigated with the improved quantum molecular dynamics (ImQMD) model. With a subtle consideration of the neutron skin thickness of nuclei and the symmetry potential, the stability of nuclei and the fusion excitation functions of heavy-ion fusion reactions $^{16}$O+$^{76}$Ge, $^{16}$O+$^{154}$Sm, $^{40}$Ca+$^{96}$Zr and $^{132}$Sn+$^{40}$Ca are systematically studied. The fusion cross sections of these reactions at energies around the Coulomb barrier can be well reproduced by using the ImQMD model. The corresponding slope parameter of the symmetry energy adopted in the calculations is $L approx 78$ MeV and the surface energy coefficient is $g_{rm sur}=18pm 1.5$ MeVfm$^2$. In addition, it is found that the surface-symmetry term significantly influences the fusion cross sections of neutron-rich fusion systems. For sub-barrier fusion, the dynamical fluctuations in the densities of the reaction partners and the enhanced surface diffuseness at neck side result in the lowering of the fusion barrier.
491 - A. K. Nasirov 2008
The yields of evaporation residues, fusion-fission and quasifission fragments in the $^{48}$Ca+$^{144,154}$Sm and $^{16}$O+$^{186}$W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the $^{48}$Ca+$^{154}$Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in $^{48}$Ca+$^{154}$Sm at the large collision energies and the lack of quasifission fragments in the $^{48}$Ca+$^{144}$Sm reaction are explained by the overlap in mass-angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element $Z$=120 ($A$=302) show that the $^{54}$Cr+$^{248}$Cm reaction is preferable in comparison with the $^{58}$Fe+$^{244}$Pu and $^{64}$Ni+$^{238}$U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.
The fusion probability for the production of superheavy nuclei in cold fusion reactions was investigated and compared with recent experimental results for $^{48}$Ca, $^{50}$Ti, and $^{54}$Cr incident on a $^{208}$Pb target. Calculations were performed within the fusion-by-diffusion model (FbD) using new nuclear data tables by Jachimowicz et al. It is shown that the experimental data could be well explained within the framework of the FbD model. The saturation of the fusion probability at bombarding energies above the interaction barrier is reproduced. It emerges naturally from the physical effect of the suppression of contributions of higher partial waves in fusion reactions and is related to the critical angular momentum. The role of the difference in values of the rotational energies in the fusion saddle point and contact (sticking) configuration of the projectile-target system is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا