Do you want to publish a course? Click here

Thermal stability and topological protection of skyrmions in nanotracks

241   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic skyrmions are hailed as a potential technology for data storage and other data processing devices. However, their stability against thermal fluctuations is an open question that must be answered before skyrmion-based devices can be designed. In this work, we study paths in the energy landscape via which the transition between the skyrmion and the uniform state can occur in interfacial Dzyaloshinskii-Moriya finite-sized systems. We find three mechanisms the system can take in the process of skyrmion nucleation or destruction and identify that the transition facilitated by the boundary has a significantly lower energy barrier than the other energy paths. This clearly demonstrates the lack of the skyrmion topological protection in finite-sized magnetic systems. Overall, the energy barriers of the system under investigation are too small for storage applications at room temperature, but research into device materials, geometry and design may be able to address this.



rate research

Read More

The two-dimensional Heisenberg exchange model with out-of-plane anisotropy and a Dzyaloshinskii-Moriya interaction is employed to investigate the lifetime and stability of antiferromagnetic (AFM) skyrmions as a function of temperature and external magnetic field. An isolated AFM skyrmion is metastable at zero temperature in a certain parameter range set by two boundaries separating the skyrmion state from the uniform AFM phase and a stripe domain phase. The distribution of the energy barriers for the AFM skyrmion decay into the uniform AFM state complements the zero-temperature stability diagram and demonstrates that the skyrmion stability region is significantly narrowed at finite temperatures.We show that the AFM skyrmion stability can be enhanced by an application of magnetic field, whose strength is comparable to the spin-flop field. This stabilization of AFM skyrmions in external magnetic fields is in sharp contrast to the behavior of their ferromagnetic counterparts. Furthermore, we demonstrate that the AFM skyrmions are stable on timescales of milliseconds below 50 K for realistic material parameters, making it feasible to observe them in modern experiments.
Recent years have witnessed significant progresses in realizing skyrmions in chiral magnets1-4 and asymmetric magnetic multilayers5-13, as well as their electrical manipulation2,7,8,10. Equally important, thermal generation, manipulation and detection of skyrmions can be exploited for prototypical new architecture with integrated computation14 and energy harvesting15. It has yet to verify if skyrmions can be purely generated by heating16,17, and if their resultant direction of motion driven by temperature gradients follows the diffusion or, oppositely, the magnonic spin torque17-21. Here, we address these important issues in microstructured devices made of multilayers: (Ta_CoFeB_MgO)15, (Pt_CoFeB_MgO_Ta)15 and (Pt_Co_Ta)15 integrated with on-chip heaters, by using a full-field soft X-ray microscopy. The thermal generation of densely packed skyrmions is attributed to the low energy barrier at the device edge, together with the thermally induced morphological transition from stripe domains to skyrmions. The unidirectional diffusion of skyrmions from the hot region towards the cold region is experimentally observed. It can be theoretically explained by the combined contribution from repulsive forces between skyrmions, and thermal spin-orbit torques in competing with magnonic spin torques17,18,20,21 and entropic forces22. These thermally generated skyrmions can be further electrically detected by measuring the accompanied anomalous Nernst voltages23. The on-chip thermoelectric generation, manipulation and detection of skyrmions could open another exciting avenue for enabling skyrmionics, and promote interdisciplinary studies among spin caloritronics15, magnonics24 and skyrmionics3,4,12.
We deal with magnetic structures that attain integer and half-integer skyrmion numbers. We model and solve the problem analytically, and show how the solutions appear in materials that engender distinct, very specific physical properties, and use them to describe their topological features. In particular, we found a way to model skyrmion with a large transition region correlated with the presence of a two-peak skyrmion number density. Moreover, we run into the issue concerning the topological strength of a vortex-like structure and suggest an experimental realization, important to decide how to modify and measure the topological strength of the magnetic structure.
Topological crystalline insulators are a class of materials with a bulk energy gap and edge or surface modes, which are protected by crystalline symmetry, at their boundaries. They have been realized in electronic systems: in particular, in SnTe. In this work, we propose a mechanism to realize photonic boundary states topologically protected by crystalline symmetry. We map this one-dimensional system to a two-dimensional lattice model with opposite magnetic fields, as well as opposite Chern numbers in its even and odd mirror parity subspaces, thus corresponding to a topological mirror insulator. Furthermore, we test how sensitive and robust edge modes depend on their mirror parity by performing time dependent evolution simulation of edge modes in a photonic setting with realistic experimental parameters.
65 - Yichen Hu , Thomas Machon 2021
We describe a topological protection mechanism for highly-twisted two-dimensional Skyrmions in systems with Dyloshinskii-Moriya (DM) coupling, where non-zero DM energy density (dubbed twisting energy density) acts as a kind of band gap in real space, yielding an N invariant for highly twisted Skyrmions. We prove our result through the application of contact topology by extending our system along a fictitious third dimension, and further establish the structural stability of highly-twisted Skyrmions under arbitrary chirality-preserving distortions. Our results apply for all two-dimensional systems hosting Skyrmion excitations including spin-orbit coupled systems exhibiting quantum Hall ferromagnetism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا