Do you want to publish a course? Click here

Stability of highly-twisted Skyrmions from contact topology

66   0   0.0 ( 0 )
 Added by Yichen Hu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a topological protection mechanism for highly-twisted two-dimensional Skyrmions in systems with Dyloshinskii-Moriya (DM) coupling, where non-zero DM energy density (dubbed twisting energy density) acts as a kind of band gap in real space, yielding an N invariant for highly twisted Skyrmions. We prove our result through the application of contact topology by extending our system along a fictitious third dimension, and further establish the structural stability of highly-twisted Skyrmions under arbitrary chirality-preserving distortions. Our results apply for all two-dimensional systems hosting Skyrmion excitations including spin-orbit coupled systems exhibiting quantum Hall ferromagnetism.

rate research

Read More

The two-dimensional Heisenberg exchange model with out-of-plane anisotropy and a Dzyaloshinskii-Moriya interaction is employed to investigate the lifetime and stability of antiferromagnetic (AFM) skyrmions as a function of temperature and external magnetic field. An isolated AFM skyrmion is metastable at zero temperature in a certain parameter range set by two boundaries separating the skyrmion state from the uniform AFM phase and a stripe domain phase. The distribution of the energy barriers for the AFM skyrmion decay into the uniform AFM state complements the zero-temperature stability diagram and demonstrates that the skyrmion stability region is significantly narrowed at finite temperatures.We show that the AFM skyrmion stability can be enhanced by an application of magnetic field, whose strength is comparable to the spin-flop field. This stabilization of AFM skyrmions in external magnetic fields is in sharp contrast to the behavior of their ferromagnetic counterparts. Furthermore, we demonstrate that the AFM skyrmions are stable on timescales of milliseconds below 50 K for realistic material parameters, making it feasible to observe them in modern experiments.
Magnetic skyrmions are nanoscale spin structures recently discovered at room temperature (RT) in multilayer films. Employing their novel topological properties towards exciting technological prospects requires a mechanistic understanding of the excitation and relaxation mechanisms governing their stability and dynamics. Here we report on the magnetization dynamics of RT Neel skyrmions in Ir/Fe/Co/Pt multilayer films. We observe a ubiquitous excitation mode in the microwave absorption spectrum, arising from the gyrotropic resonance of topological skyrmions, and robust over a wide range of temperatures and sample compositions. A combination of simulations and analytical calculations establish that the spectrum is shaped by the interplay of interlayer and interfacial magnetic interactions unique to multilayers, yielding skyrmion resonances strongly renormalized to lower frequencies. Our work provides fundamental spectroscopic insights on the spatiotemporal dynamics of topological spin structures, and crucial directions towards their functionalization in nanoscale devices.
Emergent quantum phases driven by electronic interactions can manifest in materials with narrowly dispersing, i.e. flat, energy bands. Recently, flat bands have been realized in a variety of graphene-based heterostructures using the tuning parameters of twist angle, layer stacking and pressure, and resulting in correlated insulator and superconducting states. Here we report the experimental observation of similar correlated phenomena in twisted bilayer tungsten diselenide (tWSe2), a semiconducting transition metal dichalcogenide (TMD). Unlike twisted bilayer graphene where the flat band appears only within a narrow range around a magic angle, we observe correlated states over a continuum of angles, spanning 4 degree to 5.1 degree. A Mott-like insulator appears at half band filling that can be sensitively tuned with displacement field. Hall measurements supported by ab initio calculations suggest that the strength of the insulator is driven by the density of states at half filling, consistent with a 2D Hubbard model in a regime of moderate interactions. At 5.1 degree twist, we observe evidence of superconductivity upon doping away from half filling, reaching zero resistivity around 3 K. Our results establish twisted bilayer TMDs as a model system to study interaction-driven phenomena in flat bands with dynamically tunable interactions.
We formulate the chiral decomposition rules that govern the electronic structure of a broad family of twisted $N+M$ multilayer graphene configurations that combine arbitrary stacking order and a mutual twist. We show that at the magic angle in the chiral limit the low-energy bands of such systems are composed of chiral pseudospin doublets which are energetically entangled with two flat bands per valley induced by the moire superlattice potential. The analytic analysis is supported by explicit numerical calculations based on realistic parameterization. We further show that applying vertical displacement fields can open up energy gaps between the pseudospin doublets and the two flat bands, such that the flat bands may carry nonzero valley Chern numbers. These results provide guidelines for the rational design of various topological and correlated states in generic twisted graphene multilayers.
By using the first-principles method based on density of functional theory, we study the electronic properties of twisted bilayer graphene with some specific twist angles and interlayer spacings. With the decrease of the twist angle(the unit cell becomes larger), the energy band becomes narrower and Coulomb repulsion increases, leading to the enhancement of electronic correlation; On the other hand, as the interlayer spacing decreases and the interlayer coupling becomes stronger, the correlation becomes stronger. By tuning the interlayer coupling, we can realize the strongly correlated state with the band width less than 0.01 eV in medium-sized Moire cell of twisted bilayer graphene. These results demonstrate that the strength of electronic correlation in twisted bilayer graphene is closely related to two factors: the size of unit cell and the distance between layers. Consequently, a conclusion can be drawn that the strong electronic correlation in twisted bilayer graphene originates from the synergistic effect of the large size of Moire cell and strong interlayer coupling on its electronic structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا