Do you want to publish a course? Click here

Thermal generation, manipulation and detection of skyrmions

272   0   0.0 ( 0 )
 Added by Wanjun Jiang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent years have witnessed significant progresses in realizing skyrmions in chiral magnets1-4 and asymmetric magnetic multilayers5-13, as well as their electrical manipulation2,7,8,10. Equally important, thermal generation, manipulation and detection of skyrmions can be exploited for prototypical new architecture with integrated computation14 and energy harvesting15. It has yet to verify if skyrmions can be purely generated by heating16,17, and if their resultant direction of motion driven by temperature gradients follows the diffusion or, oppositely, the magnonic spin torque17-21. Here, we address these important issues in microstructured devices made of multilayers: (Ta_CoFeB_MgO)15, (Pt_CoFeB_MgO_Ta)15 and (Pt_Co_Ta)15 integrated with on-chip heaters, by using a full-field soft X-ray microscopy. The thermal generation of densely packed skyrmions is attributed to the low energy barrier at the device edge, together with the thermally induced morphological transition from stripe domains to skyrmions. The unidirectional diffusion of skyrmions from the hot region towards the cold region is experimentally observed. It can be theoretically explained by the combined contribution from repulsive forces between skyrmions, and thermal spin-orbit torques in competing with magnonic spin torques17,18,20,21 and entropic forces22. These thermally generated skyrmions can be further electrically detected by measuring the accompanied anomalous Nernst voltages23. The on-chip thermoelectric generation, manipulation and detection of skyrmions could open another exciting avenue for enabling skyrmionics, and promote interdisciplinary studies among spin caloritronics15, magnonics24 and skyrmionics3,4,12.



rate research

Read More

Writing, erasing and computing are three fundamental operations required by any working electronic devices. Magnetic skyrmions could be basic bits in promising in emerging topological spintronic devices. In particular, skyrmions in chiral magnets have outstanding properties like compact texture, uniform size and high mobility. However, creating, deleting and driving isolated skyrmions, as prototypes of aforementioned basic operations, have been grand challenge in chiral magnets ever since the discovery of skyrmions, and achieving all these three operations in a single device is highly desirable. Here, by engineering chiral magnet Co$_8$Zn$_{10}$Mn$_2$ into the customized micro-devices for in-situ Lorentz transmission electron microscopy observations, we implement these three operations of skyrmions using nanosecond current pulses with a low a current density about $10^{10}$ A/m$^2$ at room temperature. A notched structure can create or delete magnetic skyrmions depending on the direction and magnitude of current pulses. We further show that the magnetic skyrmions can be deterministically shifted step-by-step by current pulses, allowing the establishment of the universal current-velocity relationship. These experimental results have immediate significance towards the skyrmion-based memory or logic devices.
We numerically demonstrate an ultrafast method to create $textit{single}$ skyrmions in a $textit{collinear}$ ferromagnetic sample by applying a picosecond (effective) magnetic field pulse in the presence of Dzyaloshinskii-Moriya interaction. For small samples the applied magnetic field pulse could be either spatially uniform or nonuniform while for large samples a nonuniform and localized field is more effective. We examine the phase diagram of pulse width and amplitude for the nucleation. Our finding could ultimately be used to design future skyrmion-based devices.
The two-dimensional Heisenberg exchange model with out-of-plane anisotropy and a Dzyaloshinskii-Moriya interaction is employed to investigate the lifetime and stability of antiferromagnetic (AFM) skyrmions as a function of temperature and external magnetic field. An isolated AFM skyrmion is metastable at zero temperature in a certain parameter range set by two boundaries separating the skyrmion state from the uniform AFM phase and a stripe domain phase. The distribution of the energy barriers for the AFM skyrmion decay into the uniform AFM state complements the zero-temperature stability diagram and demonstrates that the skyrmion stability region is significantly narrowed at finite temperatures.We show that the AFM skyrmion stability can be enhanced by an application of magnetic field, whose strength is comparable to the spin-flop field. This stabilization of AFM skyrmions in external magnetic fields is in sharp contrast to the behavior of their ferromagnetic counterparts. Furthermore, we demonstrate that the AFM skyrmions are stable on timescales of milliseconds below 50 K for realistic material parameters, making it feasible to observe them in modern experiments.
441 - G. Arregui , O. Ortiz , M. Esmann 2018
Inspired by concepts developed for fermionic systems in the framework of condensed matter physics, topology and topological states are recently being explored also in bosonic systems. The possibility of engineering systems with unidirectional wave propagation and protected against disorder is at the heart of this growing interest. Topogical acoustic effects have been observed in a variety of systems, most of them based on kHz-MHz sound waves, with typical wavelength of the order of the centimeter. Recently, some of these concepts have been successfully transferred to acoustic phonons in nanoscaled multilayered systems. The reported demonstration of confined topological phononic modes was based on Raman scattering spectroscopy, yet the resolution did not suffice to determine lifetimes and to identify other acoustic modes in the system. Here, we use time-resolved pump-probe measurements using an asynchronous optical sampling (ASOPS) technique to overcome these resolution limitations. By means of one-dimensional GaAs/AlAs distributed Bragg reflectors (DBRs) as building blocks, we engineer high frequency ($sim$ 200 GHz) topological acoustic interface states. We are able to clearly distinguish confined topological states from stationary band edge modes. The detection scheme reflects the symmetry of the modes directly through the selection rules, evidencing the topological nature of the measured confined state. These experiments enable a new tool in the study of the more complex topology-driven phonon dynamics such as phonon nonlinearities and optomechanical systems with simultaneous confinement of light and sound.
80 - Su-Yang Xu , Qiong Ma , Yang Gao 2019
The observation of chirality is ubiquitous in nature. Contrary to intuition, the population of opposite chiralities is surprisingly asymmetric at fundamental levels. Examples range from parity violation in the subatomic weak force to the homochirality in essential biomolecules. The ability to achieve chirality-selective synthesis (chiral induction) is of great importance in stereochemistry, molecular biology and pharmacology. In condensed matter physics, a crystalline electronic system is geometrically chiral when it lacks any mirror plane, space inversion center or roto-inversion axis. Typically, the geometrical chirality is predefined by a materials chiral lattice structure, which is fixed upon the formation of the crystal. By contrast, a particularly unconventional scenario is the gyrotropic order, where chirality spontaneously emerges across a phase transition as the electron system breaks the relevant symmetries of an originally achiral lattice. Such a gyrotropic order, proposed as the quantum analogue of the cholesteric liquid crystals, has attracted significant interest. However, to date, a clear observation and manipulation of the gyrotropic order remain challenging. We report the realization of optical chiral induction and the observation of a gyrotropically ordered phase in the transition-metal dichalcogenide semimetal $1T$-TiSe$_2$. We show that shining mid-infrared circularly polarized light near the critical temperature leads to the preferential formation of one chiral domain. As a result, we are able to observe an out-of-plane circular photogalvanic current, whose direction depends on the optical induction. Our study provides compelling evidence for the spontaneous emergence of chirality in the correlated semimetal TiSe$_2$. Such chiral induction provides a new way of optical control over novel orders in quantum materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا