Do you want to publish a course? Click here

Charm quark mass determined from a pair of sum rules

69   0   0.0 ( 0 )
 Added by Pere Masjuan
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we present preliminary results of the determination of the charm quark mass $hat{m}_c$ from QCD sum rules of moments of the vector current correlator calculated in perturbative QCD at ${cal O} (hat alpha_s^3)$. Self-consistency between two different sum rules allow to determine the continuum contribution to the moments without requiring experimental input, except for the charm resonances below the continuum threshold. The existing experimental data from the continuum region is used, then, to confront the theoretical determination and reassess the theoretic uncertainty.



rate research

Read More

173 - Adrian Signer 2008
We present an analysis to determine the charm quark mass from non-relativistic sum rules, using a combined approach taking into account fixed-order and effective-theory calculations. Non-perturbative corrections as well as higher-order perturbative corrections are under control. For the PS mass we find m_{PS}(0.7 GeV) = 1.50pm 0.04 GeV, which translates into a MS-bar mass of m = 1.25pm 0.04 GeV.
The QCD up- and down-quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector current divergences. In the QCD sector this correlator is known to five loop order in perturbative QCD (PQCD), together with non-perturbative corrections from the quark and gluon condensates. This FESR is designed to reduce considerably the systematic uncertainties arising from the hadronic spectral function. The determination is done in the framework of both fixed order and contour improved perturbation theory. Results from the latter, involving far less systematic uncertainties, are: $bar{m}_u (2, mbox{GeV}) = (2.6 , pm , 0.4) , {mbox{MeV}}$, $bar{m}_d (2, mbox{GeV}) = (5.3 , pm , 0.4) , {mbox{MeV}}$, and the sum $bar{m}_{ud} equiv (bar{m}_u , + , bar{m}_d)/2$, is $bar{m}_{ud}({ 2 ,mbox{GeV}}) =( 3.9 , pm , 0.3 ,) {mbox{MeV}}$.
It is argued that it is valid to use QCD sum rules to determine the scalar and pseudoscalar two-point functions at zero momentum, which in turn determine the ratio of the strange to non-strange quark condensates $R_{su} = frac{<bar{s} s>}{<bar{q} q>}$ with ($q=u,d$). This is done in the framework of a new set of QCD Finite Energy Sum Rules (FESR) that involve as integration kernel a second degree polynomial, tuned to reduce considerably the systematic uncertainties in the hadronic spectral functions. As a result, the parameters limiting the precision of this determination are $Lambda_{QCD}$, and to a major extent the strange quark mass. From the positivity of $R_{su}$ there follows an upper bound on the latter: $bar{m_{s}} (2 {GeV}) leq 121 (105) {MeV}$, for $Lambda_{QCD} = 330 (420) {MeV} .$
240 - Stephan Narison 2020
We report results of our recent works [1,2] where we where the correlations between the c,b-quark running masses{m}_{c,b}, the gluon condensate<alpha_s G^2> and the QCD coupling alpha_s in the MS-scheme from an analysis of the charmonium and bottomium spectra and the B_c-meson mass. We use optimized ratios of relativistic Laplace sum rules (LSR) evaluated at the mu-subtraction stability point where higher orders PT and D< 6-8-dimensions non-perturbative condensates corrections are included. We obtain [1] alpha_s(2.85)=0.262(9) and alpha_s(9.50)=0.180(8) from the (pseudo)scalar M_{chi_{0c(0b)}}-M_{eta_{c(b)}} mass-splittings at mu=2.85(9.50) GeV. The most precise result from the charm channel leads to alpha_s(M_tau)=0.318(15) and alpha_s(M_Z)=0.1183(19)(3) in excellent agreement with the world average: alpha_s(M_Z)=0.1181(11)[3,4]. Updated results from a global fit of the (axial-)vector and (pseudo)scalar channels using Laplace and Moments sum rules @ N2LO [1] combined with the one from M_{B_c} [2] lead to the new tentative QCD spectral sum rules (QSSR) average : m_c(m_c)|_average= 1266(6) MeV and m_b(m_b)|_average=4196(8) MeV. The values of the gluon condensate <alpha_s G^2> from the (axial)-vector charmonium channels combined with previous determinations in Table 1, leads to the new QSSR average [1]: <alpha_s G^2>_average=(6.35pm 0.35)x 10^{-2} GeV^4. Our results clarify the (apparent) discrepancies between different estimates of <alpha_s G^2> from J/psi sum rule but also shows the sensitivity of the sum rules on the choice of the mu-subtraction scale. As a biproduct, we deduce the B_c-decay constants f_{B_c}=371(17) MeV and f_{B_c}(2S)< 139(6) MeV.
Correlations between light neutrino observables are arguably the strongest predictions of lepton avour models based on (discrete) symmetries, except for the very few cases which unambiguously predict the full set of leptonic mixing angles. A subclass of these correlations are neutrino mass sum rules, which connect the three (complex) light neutrino mass eigenvalues among each other. This connection constrains both the light neutrino mass scale and the Majorana phases, so that mass sum rules generically lead to a nonzero value of the lightest neutrino mass and to distinct predictions for the e ective mass probed in neutrinoless double beta decay. However, in nearly all cases known, the neutrino mass sum rules are not exact and receive corrections from various sources. We introduce a formalism to handle these corrections perturbatively in a model-independent manner, which overcomes issues present in earlier approaches. Our ansatz allows us to quantify the modi cation of the predictions derived from neutrino mass sum rules. We show that, in most cases, the predictions are fairly stable: while small quantitative changes can appear, they are generally rather mild. We therefore establish the predictivity of neutrino mass sum rules on a level far more general than previously known.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا