Do you want to publish a course? Click here

QCD parameters and f_{B_c} from heavy quark sum rules

241   0   0.0 ( 0 )
 Added by Stephan Narison
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We report results of our recent works [1,2] where we where the correlations between the c,b-quark running masses{m}_{c,b}, the gluon condensate<alpha_s G^2> and the QCD coupling alpha_s in the MS-scheme from an analysis of the charmonium and bottomium spectra and the B_c-meson mass. We use optimized ratios of relativistic Laplace sum rules (LSR) evaluated at the mu-subtraction stability point where higher orders PT and D< 6-8-dimensions non-perturbative condensates corrections are included. We obtain [1] alpha_s(2.85)=0.262(9) and alpha_s(9.50)=0.180(8) from the (pseudo)scalar M_{chi_{0c(0b)}}-M_{eta_{c(b)}} mass-splittings at mu=2.85(9.50) GeV. The most precise result from the charm channel leads to alpha_s(M_tau)=0.318(15) and alpha_s(M_Z)=0.1183(19)(3) in excellent agreement with the world average: alpha_s(M_Z)=0.1181(11)[3,4]. Updated results from a global fit of the (axial-)vector and (pseudo)scalar channels using Laplace and Moments sum rules @ N2LO [1] combined with the one from M_{B_c} [2] lead to the new tentative QCD spectral sum rules (QSSR) average : m_c(m_c)|_average= 1266(6) MeV and m_b(m_b)|_average=4196(8) MeV. The values of the gluon condensate <alpha_s G^2> from the (axial)-vector charmonium channels combined with previous determinations in Table 1, leads to the new QSSR average [1]: <alpha_s G^2>_average=(6.35pm 0.35)x 10^{-2} GeV^4. Our results clarify the (apparent) discrepancies between different estimates of <alpha_s G^2> from J/psi sum rule but also shows the sensitivity of the sum rules on the choice of the mu-subtraction scale. As a biproduct, we deduce the B_c-decay constants f_{B_c}=371(17) MeV and f_{B_c}(2S)< 139(6) MeV.



rate research

Read More

Finite energy QCD sum rules with Legendre polynomial integration kernels are used to determine the heavy meson decay constant $f_{B_c}$, and revisit $f_B$ and $f_{B_s}$. Results exhibit excellent stability in a wide range of values of the integration radius in the complex squared energy plane, and of the order of the Legendre polynomial. Results are $f_{B_c} = 528 pm 19$ MeV, $f_B = 186 pm 14$ MeV, and $f_{B_s} = 222 pm 12$ MeV.
We briefly report the modern status of heavy quark sum rules (HQSR) based on stability criteria by emphasizing the recent progresses for determining the QCD parameters (alpha_s, m_{c,b} and gluon condensates)where their correlations have been taken into account. The results: alpha_s(M_Z)=0.1181(16)(3), m_c(m_c)=1286(16) MeV, m_b(m_b)=4202(7) MeV,<alpha_s G^2> = (6.49+-0.35)10^-2 GeV^4, < g^3 G^3 >= (8.2+-1.0) GeV^2 <alpha_s G^2> and the ones from recent light quark sum rules are summarized in Table 2. One can notice that the SVZ value of <alpha_s G^2> has been underestimated by a factor 1.6, <g^3 G^3> is much bigger than the instanton model estimate, while the four-quark condensate which mixes under renormalization is incompatible with the vacuum saturation which is phenomenologically violated by a factor (2~4). The uses of HQSR for molecules and tetraquarks states are commented.
These talks review and summarize our results in [1,2] on $XYZ$-like spectra obtained from QCD Laplace Sum Rules in the chiral limit at next-to-next-leading order (N2LO) of perturbation theory (PT) and including leading order (LO) contributions of dimensions $dleq 6-8$ non-perturbative condensates. We conclude that the observed $XZ$ states are good candidates for $1^{+}$ and $0^+$ molecules or / and four-quark states while the predictions for $1^-$ and $0^-$ states are about 1.5 GeV above the $Y_{c,b}$ experimental candidates and hadronic thresholds. We (numerically) find that these exotic molecules couple weakly to the corresponding interpolating currents than ordinary $D,B$ heavy-light mesons while we observe that these couplings decrease faster [$1/m_b^{3/2}$ (resp. $1/m_b$) for the $1^+,0^+$ (resp. $1^-,0^-)$ states] than $1/m_b^{1/2}$. Our results do not also confirm the existence of the $X(5568)$ state in agreement with LHCb findings.
75 - Stephan Narison 2018
Correlations between the QCD coupling alpha_s, the gluon condensate < alpha_s G^2 >, and the c,b-quark running masses m_c,b in the MS-scheme are explicitly studied (for the first time) from the (axial-)vector and (pseudo)scalar charmonium and bottomium ratios of Laplace sum rules (LSR) evaluated at the mu-subtraction stability point where PT @N2LO, N3LO and < alpha_s G^2> @NLO corrections are included. Our results clarify the (apparent) discrepancies between different estimates of < alpha_s G^2> from J/psi sum rule but also shows the sensitivity of the sum rules on the choice of the mu-subtraction scale which does not permit a high-precision estimate of m_c,b. We obtain from the (axial-)vector [resp. (pseudo)scalar] channels <alpha_s G^2>=(8.5+- 3.0)> [resp. (6.34+-.39)] 10^-2 GeV^4, m_c(m_c)= 1256(30) [resp. 1266(16)] MeV and m_b(m_b)=4192(15) MeV. Combined with our recent determinations from vector channel, one obtains the average: m_c(m_c)= 1263(14) MeV and m_b(m_b) 4184(11) MeV. Adding our value of the gluon condensate with different previous estimates, we obtain the new sum rule average: <alpha_s G^2>=(6.35+- 0.35) 10^-2 GeV^4. The mass-splittings M_chi_0c(0b)-M_eta_c(b) give @N2LO: alpha_s(M_Z)=0.1183(19)(3) in good agreement with the world average (see more detailed discussions in the section: addendum). .
163 - R. Albuquerque 2018
We review our results in Refs.[1,2] for the masses and couplings of heavy-light DD(BB)-like molecules and (Qq)(Qq)-like four-quark states from relativistic QCD Laplace sum rules (LSR) where next-to-next-to-leading order (N2LO) PT corrections in the chiral limit, next-to-leading order (NLO) SU3 PT corrections and non-perturbative contributions up to dimension d=6-8 are included. The factorization properties of molecule and four-quark currents have been used for the estimate of the higher order PT corrections. New integrated compact expressions of the spectral functions at leading order (LO) of perturbative QCD and up to dimensions d< (6 - 8) non-perturbative condensates are presented. The results are summarized in Tables 5 to 10, from which we conclude, within the errors, that the observed XZ states are good candidates for being 1^{++} and 0^{++} molecules or/and four-quark states, contrary to the observed Y states which are too light compared to the predicted 1^{-pm} and 0^{-pm} states. We find that the SU3 breakings are relatively small for the masses (< 10(resp. 3)%) for the charm (resp. bottom) channels while they are large (< 20%) for the couplings which decrease faster (1/m_{b}^{3/2}) than 1/m_{b}^{1/2} of HQET. QCD spectral sum rules (QSSR) approach cannot clearly separate (within the errors) molecules from four-quark states having the same quantum numbers. Results for the BK (DK)-like molecules and (Qq)(us)-like four-quark states from [3] are also reviewed which do not favour the molecule or/and four-quark interpretation of the X(5568). We suggest to scan the charm (2327 ~ 2444) MeV and bottom (5173 ~ 5226) MeV regions for detecting the (unmixed)(cu)ds and (bu)ds states. We expect that future experimental data and lattice results will check our predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا