Do you want to publish a course? Click here

Origin of enhanced visible-light photocatalytic activity of transition metal (Fe, Cr and Co) doped CeO2: Effect of 3d-orbital splitting

99   0   0.0 ( 0 )
 Added by Wei-Qing Huang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Enhanced visible light photocatalytic activity of transition metal-doped ceria (CeO2) nanomaterials have experimentally been demonstrated, whereas there are very few reports mentioning the mechanism of this behavior. Here we use first-principles calculations to explore the origin of enhanced photocatalytic performance of CeO2 doped with transition metal impurities (Fe, Cr and Co). When a transition metal atom substitutes a Ce atom into CeO2, t2g and eg levels of 3d orbits appear in the middle of band gap owing to the effect of cubic ligand field, and the former is higher than latter. Interestingly, t2g subset of FeCe (CoCe and CrCe)-Vo-CeO2 is split into two parts: one merges into the conduction band, the other as well as eg will remain in the gap, because O vacancy defect adjacent to transition metal atom will break the symmetry of cubic ligand field. These eg and t2g levels in the band gap are beneficial for absorbing visible light and enhancing quantum efficiency because of forbidden transition, which is one key factor for enhanced visible light photocatalytic activity. The band gap narrowing also leads to a redshift of optical absorbance and high photoactivity. These findings can rationalize the available experimental results and provide some new insights for designing CeO2-based photocatalysts with high photocatalytic performance.



rate research

Read More

Developing single atom catalysts (SACs) for chemical reactions of vital importance in renewable energy sector has emerged as a need of the hour. In this perspective, transition metal based SACs with monolayer phosphorous (phosphorene) as the supporting material are scrutinized for their electrocatalytic activity towards oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) from first principle calculations. The detailed screening study has confirmed a breaking of scaling relationship between ORR/OER intermediates resulting in varied activity trends across the transition metal series. Group 9 and 10 transition metal based SACs are identified as potential catalyst candidates with platinum single atom offering bifunctional activity for OER and HER with diminished overpotentials. Ambient condition stability analysis of SACs confirmed a different extent of interaction towards oxygen and water compared to pristine phosphorene suggesting room for improving the stability of phosphorene via chemical functionalization.
Perovskite titanates such as SrTiO$_{3}$ (STO) exhibit a wide range of important functional properties, including high electron mobility, ferroelectricity, and excellent photocatalytic performance. The wide optical band gap of titanates limits their use in these applications, however, making them ill-suited for integration into solar energy harvesting technologies. Our recent work has shown that by doping STO with equal concentrations of La and Cr we can enhance visible light absorption in epitaxial thin films while avoiding any compensating defects. In this work, we explore the optical properties of photoexcited carriers in these films. Using spectroscopic ellipsometry, we show that the Cr$^{3+}$ dopants, which produce electronic states immediately above the top of the O 2p valence band in STO reduce the direct band gap of the material from 3.75 eV to between 2.4 and 2.7 eV depending on doping levels. Transient reflectance spectroscopy measurements are in agreement with the observations from ellipsometry and confirm that optically generated carriers are present for longer than 2 ns. Finally, through photoelectrochemical methylene blue degradation measurements, we show that these co-doped films exhibit enhanced visible light photocatalysis when compared to pure STO.
It has been demonstrated in previous experimental and computational work that doping CeO2 with transition metals is an effective way of tuning its properties. However, each previous study on CeO2 doping has been limited to a single or a few dopants. In this paper, we systematically study the formation energies, structural stability and electronic properties of CeO2 doped with the entire range of the ten 3d transition metals using density functional theory (DFT) calculations at the hybrid level. The formation energies of oxygen vacancies, and their effects on electronic properties, were also considered. It is found that most of the 3d transition metal dopants can lower the band gap of CeO2, with V and Co doping significantly reducing the band gap to less than 2.0 eV. Furthermore, all of the dopants can lower the formation energy of oxygen vacancies, and those with higher atomic numbers, particularly Cu and Zn, are most effective for this purpose. The electronic structures of doped CeO2 compensated by oxygen vacancies show that the presence of oxygen vacancies can further lower the band gap for most of the dopants, with V-, Cr-, Fe-, Co-, Ni-, and Cu-doped CeO2 all having band gaps of less than 2.0 eV. These results suggest that doping CeO2 with 3d transition metals could enhance the photocatalytic performance under visible light and increase the oxygen vacancy concentration, and they could provide a meaningful guide for the design of CeO2-based materials with improved photocatalytic and catalytic performance as well as enhanced ionic conductivity.
204 - O. Gaier , J. Hamrle , S. Trudel 2009
The thermal magnonic spectra of Co$_{2}$Cr$_{0.6}$Fe$_{0.4}$Al (CCFA) and Co$_2$FeAl were investigated using Brillouin light scattering spectroscopy (BLS). For CCFA, the exchange constant A (exchange stiffness D) is found to be 0.48 $mu$erg/cm (203 meV A$^2$), while for Co$_2$FeAl the corresponding values of 1.55 $mu$erg/cm (370 meV A$^2$) were found. The observed asymmetry in the BLS spectra between the Stokes and anti-Stokes frequencies was assigned to an interplay between the asymmetrical profiles of hybridized Damon-Esbach and perpendicular standing spin-wave modes, combined with the optical sensitivity of the BLS signal to the upper side of the CCFA or Co$_2$FeAl film.
739 - Y. Lei , Y. Z. Chen , Y. W. Xie 2014
Electrical field and light-illumination have been two most widely used stimuli in tuning the conductivity of semiconductor devices. Via capacitive effect electrical field modifies the carrier density of the devices, while light-illumination generates extra carriers by exciting trapped electrons into conduction band1. Here, we report on an unexpected light illumination enhanced field effect in a quasi-two-dimensional electron gas (q2DEG) confined at the LaAlO3/SrTiO3 (LAO/STO) interface which has been the focus of emergent phenomenon exploration2-14. We found that light illumination greatly accelerates and amplifies the field effect, driving the field-induced resistance growth which originally lasts for thousands of seconds into an abrupt resistance jump more than two orders of magnitude. Also, the field-induced change in carrier density is much larger than that expected from the capacitive effect, and can even be opposite to the conventional photoelectric effect. This work expands the space for novel effect exploration and multifunctional device design at complex oxide interfaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا