Do you want to publish a course? Click here

Brillouin light scattering study of Co$_{2}$Cr$_{0.6}$Fe$_{0.4}$Al and Co$_{2}$FeAl Heusler compounds

204   0   0.0 ( 0 )
 Added by Jaroslav Hamrle
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The thermal magnonic spectra of Co$_{2}$Cr$_{0.6}$Fe$_{0.4}$Al (CCFA) and Co$_2$FeAl were investigated using Brillouin light scattering spectroscopy (BLS). For CCFA, the exchange constant A (exchange stiffness D) is found to be 0.48 $mu$erg/cm (203 meV A$^2$), while for Co$_2$FeAl the corresponding values of 1.55 $mu$erg/cm (370 meV A$^2$) were found. The observed asymmetry in the BLS spectra between the Stokes and anti-Stokes frequencies was assigned to an interplay between the asymmetrical profiles of hybridized Damon-Esbach and perpendicular standing spin-wave modes, combined with the optical sensitivity of the BLS signal to the upper side of the CCFA or Co$_2$FeAl film.



rate research

Read More

176 - J. Hamrle , S. Blomeier , O. Gaier 2006
Magnetic anisotropies and magnetization reversal properties of the epitaxial Heusler compound Co$_2$Cr$_{0.6}$Fe$_{0.4}$Al (CCFA) deposited on Fe and Cr buffer layers are studied. Both samples exhibit a growth-induced fourfold anisotropy, and magnetization reversal occurs through the formation of stripy domains or 90 degree domains. During rotational magnetometric scans the sample deposited on Cr exhibits about 2 degree sharp peaks in the angular dependence of the coercive field, which are oriented along the hard axis directions. These peaks are a consequence of the specific domain structure appearing in this particular measurement geometry. A corresponding feature in the sample deposited on Fe is not observed.
Brillouin light scattering spectroscopy from so-called standing spin waves in thin magnetic films is often used to determine the magnetic exchange constant. The data analysis of the experimentally determined spin-wave modes requires an unambiguous assignment to the correct spin wave mode orders. Often additional investigations are needed to guarantee correct assignment. This is particularly important in the case of Heusler compounds where values of the exchange constant vary substantially between different compounds. As a showcase, we report on the determination of the exchange constant (exchange stiffness constant) in Co$_2$MnSi, which is found to be $A=2.35pm0.1$ $mu$erg/cm ($D=575pm20$ meV AA$^2$), a value comparable to the value of the exchange constant of Co.
The local atomic environments and magnetic properties were investigated for a series of Co(1+x)Fe(2-x)Si (0<x<1) Heusler compounds. While the total magnetic moment in these compounds increases with the number of valance electrons, the highest Curie temperature (Tc) in this series was found for Co1.5Fe1.5Si, with a Tc of 1069 K (24 K higher than the well known Co2FeSi). 57Fe Mossbauer spectroscopy was used to characterize the local atomic order and to estimate the Co and Fe magnetic moments. Consideration of the local magnetic moments and the exchange integrals is necessary to understand the trend in Tc.
We report the structural, magnetic, and magnetocaloric properties of Co$_2$Cr$_{1-x}$Ti$_x$Al ($x=$ 0--0.5) Heusler alloys for spintronic and magnetic refrigerator applications. Room temperature X-ray diffraction and neutron diffraction patterns along with Rietveld refinements confirm that the samples are of single phase and possess a cubic structure. Interestingly, magnetic susceptibly measurements indicate a second order phase transition from paramagnetic to ferromagnetic where the Curie temperature (T$_{rm C}$) of Co$_2$CrAl increases from 330~K to 445~K with Ti substitution. Neutron powder diffraction data of the $x=$ 0 sample across the magnetic phase transition taken in a large temperature range confirm the structural stability and exclude the possibility of antiferromagnetic ordering. The saturation magnetization of the $x=$ 0 sample is found to be 8000~emu/mol (1.45~$mu_{rm B}$/{it f.u.}) at 5~K, which is in good agreement with the value (1.35$pm$0.05~$mu_{rm B}$/{it f.u.}) obtained from the Rietveld analysis of the neutron powder diffraction pattern measured at temperature of 4~K. By analysing the temperature dependence of the neutron data of the $x=$ 0 sample, we find that the change in the intensity of the most intense Bragg peak (220) is consistent with the magnetization behavior with temperature. Furthermore, an enhancement of change in the magnetic entropy and relative cooling power values has been observed for the $x=$ 0.25 sample. Interestingly, the critical behavior analysis across the second order magnetic phase transition and extracted exponents ($betaapprox$ 0.496, $gammaapprox$ 1.348, and $deltaapprox$ 3.71 for the $x=$ 0.25 sample) suggest the presence of long-range ordering, which deviates towards 3D Heisenberg type interactions above T$_{rm C}$, consistent with the interaction range value $sigma$.
We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy $mathrm{Co_{2}FeAl}$, probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to results from electronic structure theory and atomistic spin-dynamics simulations. Experimentally, we find that the demagnetization time ($tau_{M}$) in films of $mathrm{Co_{2}FeAl}$ is almost independent of varying structural order, and that it is similar to that in elemental 3d ferromagnets. In contrast, the slower process of magnetization recovery, specified by $tau_{R}$, is found to occur on picosecond time scales, and is demonstrated to correlate strongly with the Gilbert damping parameter ($alpha$). Our results show that $mathrm{Co_{2}FeAl}$ is unique, in that it is the first material that clearly demonstrates the importance of the damping parameter in the remagnetization process. Based on these results we argue that for $mathrm{Co_{2}FeAl}$ the remagnetization process is dominated by magnon dynamics, something which might have general applicability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا