Do you want to publish a course? Click here

Low-field electron mobility of InSb nanowires: Numerical efforts to larger cross sections

63   0   0.0 ( 0 )
 Added by Xin-Qi Li
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Within the framework of Boltzmann equation, we present a $mathbf{kcdot p}$ theory based study for the low-field mobilities of InSb nanowires (InSb NWs) with relatively large cross sectional sizes (with diameters up to 51.8 nm). For such type of large size nanowires, the intersubband electron-phonon scattering is of crucial importance to affect the scattering rate and then the mobility. In our simulation, the lowest 15 electron subbands and 50 transverse modes of phonons are carefully accounted for. We find that, up to the 51.84 nm diameter, the mobility monotonously increases with the diameter, not yet showing any saturated behavior. We also find that, while the bulk InSb mobility is considerably higher than the bulk Si, the small size (e.g. $sim 3$ nm diameter) nanowires from both materials have similar magnitude of mobilities. This implies, importantly, that the mobility of the InSb NWs would decrease faster than the SiNWs as we reduce the cross sectional size of the nanowires.



rate research

Read More

InSb nanowire arrays with different geometrical parameters, diameter and pitch, are fabricated by top-down etching process on Si(100) substrates. Field emission properties of InSb nanowires are investigated by using a nano-manipulated tungsten probe-tip as anode inside the vacuum chamber of a scanning electron microscope. Stable field emission current is reported, with a maximum intensity extracted from a single nanowire of about 1$mu A$, corresponding to a current density as high as 10$^4$ A/cm$^2$. Stability and robustness of nanowire is probed by monitoring field emission current for about three hours. By tuning the cathode-anode separation distance in the range 500nm - 1300nm, the field enhancement factor and the turn-on field exhibit a non-monotonic dependence, with a maximum enhancement $beta simeq $ 78 and a minimum turn-on field $E_{ON} simeq$ 0.033 V/nm for a separation d =900nm. The reduction of spatial separation between nanowires and the increase of diameter cause the reduction of the field emission performance, with reduced field enhancement ($beta <$ 60) and increased turn-on field ($E_{ON} simeq $ 0.050 V/nm). Finally, finite element simulation of the electric field distribution in the system demonstrates that emission is limited to an effective area near the border of the nanowire top surface, with annular shape and maximum width of 10 nm.
Ballistic electron transport is a key requirement for existence of a topological phase transition in proximitized InSb nanowires. However, measurements of quantized conductance as direct evidence of ballistic transport have so far been obscured due to the increased chance of backscattering in one dimensional nanowires. We show that by improving the nanowire-metal interface as well as the dielectric environment we can consistently achieve conductance quantization at zero magnetic field. Additionally, studying the sub-band evolution in a rotating magnetic field reveals an orbital degeneracy between the second and third sub-bands for perpendicular fields above 1T.
Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor, and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (~ 0.5 Tesla), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two dimensional electron gases and topological insulators, and holds relevance for topological superconductivity and quantum computation.
106 - S. Maximov 2004
The low magnetic field diffusion thermopower of a high mobility GaAs-heterostructure has been measured directly on an electrostatically defined micron-scale Hall-bar structure at low temperature (T = 1.6 K) in the low magnetic field regime (B < 1.2 T) where delocalized quantum Hall states do not influence the measurements. The sample design allowed the determination of the field dependence of the thermopower both parallel and perpendicular to the temperature gradient, denoted respectively by Sxx (longitudinal thermopower) and Syx (Nernst-Ettinghausen coefficient). The experimental data show clear oscillations in Sxx and Syx due to the formation of Landau levels for 0.3 T < B < 1.2 T and reveal that Syx is approximately 120 times larger than Sxx at a magnetic field of 1 T, which agrees well with the theoretical prediction.
We report on transport measurement study of top-gated field effect transistors made out of InSb nanowires grown by chemical vapor deposition. The transistors exhibit ambipolar transport characteristics revealed by three distinguished gate-voltage regions: In the middle region where the fermi level resides within the bandgap, the electrical resistance shows an exponential dependence on temperature and gate voltage. With either more positive or negative gate voltages, the devices enter the electron and hole transport regimes, revealed by a resistance decreasing linearly with decreasing temperature. From the transport measurement data of a 1-$mu$m-long device made from a nanowire of 50 nm in diameter, we extract a bandgap energy of 190-220 meV. The off-state current of this device is found to be suppressed within the measurement noise at a temperature of T = 4 K. A shorter, 260-nm-long device is found to exhibit a finite off-state current and a hole, on-state, circumference-normalized current of 11 $mu$A/$mu$m at V$_D$ = 50 mV which is the highest for such a device to our knowledge. The ambipolar transport characteristics make the InSb nanowires attractive for CMOS electronics, hybrid electron-hole quantum systems and hole based spin qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا