Do you want to publish a course? Click here

Conductance Quantization at zero magnetic field in InSb nanowires

70   0   0.0 ( 0 )
 Added by Jakob Kammhuber
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ballistic electron transport is a key requirement for existence of a topological phase transition in proximitized InSb nanowires. However, measurements of quantized conductance as direct evidence of ballistic transport have so far been obscured due to the increased chance of backscattering in one dimensional nanowires. We show that by improving the nanowire-metal interface as well as the dielectric environment we can consistently achieve conductance quantization at zero magnetic field. Additionally, studying the sub-band evolution in a rotating magnetic field reveals an orbital degeneracy between the second and third sub-bands for perpendicular fields above 1T.



rate research

Read More

Majorana Zero Modes (MZMs) are prime candidates for robust topological quantum bits, holding a great promise for quantum computing. Semiconducting nanowires with strong spin orbit coupling offers a promising platform to harness one-dimensional electron transport for Majorana physics. Demonstrating the topological nature of MZMs relies on braiding, accomplished by moving MZMs around each other in a certain sequence. Most of the proposed Majorana braiding circuits require nanowire networks with minimal disorder. Here, the electronic transport across a junction between two merged InSb nanowires is studied to investigate how disordered these nanowire networks are. Conductance quantization plateaus are observed in all contact pairs of the epitaxial InSb nanowire networks; the hallmark of ballistic transport behavior.
InSb nanowire arrays with different geometrical parameters, diameter and pitch, are fabricated by top-down etching process on Si(100) substrates. Field emission properties of InSb nanowires are investigated by using a nano-manipulated tungsten probe-tip as anode inside the vacuum chamber of a scanning electron microscope. Stable field emission current is reported, with a maximum intensity extracted from a single nanowire of about 1$mu A$, corresponding to a current density as high as 10$^4$ A/cm$^2$. Stability and robustness of nanowire is probed by monitoring field emission current for about three hours. By tuning the cathode-anode separation distance in the range 500nm - 1300nm, the field enhancement factor and the turn-on field exhibit a non-monotonic dependence, with a maximum enhancement $beta simeq $ 78 and a minimum turn-on field $E_{ON} simeq$ 0.033 V/nm for a separation d =900nm. The reduction of spatial separation between nanowires and the increase of diameter cause the reduction of the field emission performance, with reduced field enhancement ($beta <$ 60) and increased turn-on field ($E_{ON} simeq $ 0.050 V/nm). Finally, finite element simulation of the electric field distribution in the system demonstrates that emission is limited to an effective area near the border of the nanowire top surface, with annular shape and maximum width of 10 nm.
By studying the time-dependent axial and radial growth of InSb nanowires, we map the conditions for the synthesis of single-crystalline InSb nanocrosses by molecular beam epitaxy. Low-temperature electrical measurements of InSb nanocross devices with local gate control on individual terminals exhibit quantized conductance and are used to probe the spatial distribution of the conducting channels. Tuning to a situation where the nanocross junction is connected by few-channel quantum point contacts in the connecting nanowire terminals, we show that transport through the junction is ballistic except close to pinch-off. Combined with a new concept for shadow-epitaxy of patterned superconductors on nanocrosses, the structures reported here show promise for the realization of non-trivial topological states in multi-terminal Josephson Junctions.
Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor, and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (~ 0.5 Tesla), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two dimensional electron gases and topological insulators, and holds relevance for topological superconductivity and quantum computation.
We report transport measurements and tunneling spectroscopy in hybrid nanowires with epitaxial layers of superconducting Al and the ferromagnetic insulator EuS, grown on semiconducting InAs nanowires. In devices where the Al and EuS covered facets overlap, we infer a remanent effective Zeeman field of order 1 T, and observe stable zero-bias conductance peaks in tunneling spectroscopy into the end of the nanowire, consistent with topological superconductivity at zero applied field. Hysteretic features in critical current and tunneling spectra as a function of applied magnetic field support this picture. Nanowires with non-overlapping Al and EuS covered facets do not show comparable features. Topological superconductivity in zero applied field allows new device geometries and types of control.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا