No Arabic abstract
Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor, and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (~ 0.5 Tesla), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two dimensional electron gases and topological insulators, and holds relevance for topological superconductivity and quantum computation.
Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunneling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand. However, previous instances of proximitized semiconductors show significant tunneling conductance below the superconducting gap, suggesting a continuum of subgap states---a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by proximity effect in a semiconductor, using epitaxial Al-InAs superconductor-semiconductor nanowires. The hard gap, along with favorable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity.
We report superconductivity in quasi-1D nanostructures created at the LaAlO3/SrTiO3 interface. Nanostructures having line widths w~10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3 (w<<xi~100 nm), placing them in the quasi-1D regime. Broad superconducting transitions with temperature and finite resistances in the superconducting state well below Tc~200 mK are observed. V-I curves show switching between the superconducting and normal states that are characteristic of superconducting nanowires. The four-terminal resistance in the superconducting state shows an unusual dependence on the current path, varying by as much as an order of magnitude.
Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here, we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor which enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.
Epitaxially grown, high quality semiconductor InSb nanowires are emerging material systems for the development of high performance nanoelectronics and quantum information processing and communication devices, and for the studies of new physical phenomena in solid state systems. Here, we report on measurements of a superconductor-normal conductor-superconductor junction device fabricated from an InSb nanowire with aluminum based superconducting contacts. The measurements show a proximity induced supercurrent flowing through the InSb nanowire segment, with a critical current tunable by a gate, in the current bias configuration and multiple Andreev reflection characteristics in the voltage bias configuration. The temperature dependence and the magnetic field dependence of the critical current and the multiple Andreev reflection characteristics of the junction are also studied. Furthermore, we extract the excess current from the measurements and study its temperature and magnetic field dependences. The successful observation of the superconductivity in the InSb nanowire based Josephson junction device indicates that InSb nanowires provide an excellent material system for creating and observing novel physical phenomena such as Majorana fermions in solid state systems.
InSb nanowire arrays with different geometrical parameters, diameter and pitch, are fabricated by top-down etching process on Si(100) substrates. Field emission properties of InSb nanowires are investigated by using a nano-manipulated tungsten probe-tip as anode inside the vacuum chamber of a scanning electron microscope. Stable field emission current is reported, with a maximum intensity extracted from a single nanowire of about 1$mu A$, corresponding to a current density as high as 10$^4$ A/cm$^2$. Stability and robustness of nanowire is probed by monitoring field emission current for about three hours. By tuning the cathode-anode separation distance in the range 500nm - 1300nm, the field enhancement factor and the turn-on field exhibit a non-monotonic dependence, with a maximum enhancement $beta simeq $ 78 and a minimum turn-on field $E_{ON} simeq$ 0.033 V/nm for a separation d =900nm. The reduction of spatial separation between nanowires and the increase of diameter cause the reduction of the field emission performance, with reduced field enhancement ($beta <$ 60) and increased turn-on field ($E_{ON} simeq $ 0.050 V/nm). Finally, finite element simulation of the electric field distribution in the system demonstrates that emission is limited to an effective area near the border of the nanowire top surface, with annular shape and maximum width of 10 nm.