Do you want to publish a course? Click here

Interlayer current near the edge of an InAs/GaSb double quantum well in proximity with a superconductor

86   0   0.0 ( 0 )
 Added by Eduard V. Deviatov
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate charge transport through the junction between a niobium superconductor and the edge of a two-dimensional electron-hole bilayer, realized in an InAs/GaSb double quantum well. For the transparent interface with a superconductor, we demonstrate that the junction resistance is determined by the interlayer charge transfer near the interface. From an analysis of experimental $I-V$ curves we conclude that the proximity induced superconductivity efficiently couples electron and hole layers at low currents. The critical current demonstrates periodic dependence on the in-plane magnetic field, while it is monotonous for the field which is normal to the bilayer plane.

rate research

Read More

We experimentally investigate transport through the side junction between a niobium superconductor and the mesa edge of a two-dimensional system, realized in an InAs/GaSb double quantum well with band inversion. We demonstrate, that different transport regimes can be achieved by variation of the mesa step. We observe anomalous behavior of Andreev reflection within a finite low-bias interval, which is invariant for both transport regimes. We connect this behavior with the transition from retro- (at low biases) to specular (at high ones) Andreev reflection channels in an InAs/GaSb double quantum well with band inversion.
We present transport measurements on a lateral p-n junction in an inverted InAs/GaSb double quantum well at zero and nonzero perpendicular magnetic fields. At a zero magnetic field, the junction exhibits diodelike behavior in accordance with the presence of a hybridization gap. With an increasing magnetic field, we explore the quantum Hall regime where spin-polarized edge states with the same chirality are either reflected or transmitted at the junction, whereas those of opposite chirality undergo a mixing process, leading to full equilibration along the width of the junction independent of spin. These results lay the foundations for using p-n junctions in InAs/GaSb double quantum wells to probe the transition between the topological quantum spin Hall and quantum Hall states.
A Corbino ring geometry is utilized to analyze edge and bulk conductance of InAs/GaSb quantum well structures. We show that edge conductance exists in the trivial regime of this theoretically-predicted topological system with a temperature insensitive linear resistivity per unit length in the range of 2 kOhm/um. A resistor network model of the device is developed to decouple the edge conductance from the bulk conductance, providing a quantitative technique to further investigate the nature of this trivial edge conductance, conclusively identified here as being of n-type.
Spin-orbit interaction is investigated in a dual gated InAs/GaSb quantum well. Using an electric field the quantum well can be tuned between a single carrier regime with exclusively electrons as carriers and a two-carriers regime where electrons and holes coexist. Spin-orbit interaction in both regimes manifests itself as a beating in the Shubnikov-de Haas oscillations. In the single carrier regime the linear Dresselhaus strength is characterized by $beta =$ 28.5 meV$AA$ and the Rashba coefficient $alpha$ is tuned from 75 to 53 meV$AA$ by changing the electric field. In the two-carriers regime the spin splitting shows a nonmonotonic behavior with gate voltage, which is consistent with our band structure calculations.
We experimentally investigate electron transport through the interface between a superconductor and the edge of a two-dimensional electron system with band inversion. The interface is realized as a tunnel NbN side contact to a narrow 8~nm HgTe quantum well. It demonstrates a typical Andreev behavior with finite conductance within the superconducting gap. Surprisingly, the conductance is modulated by a number of equally-spaced oscillations. The oscillations are present only within the superconducting gap and at lowest, below 1~K, temperatures. The oscillations disappear completely in magnetic fields, normal to the two-dimensional electron system plane. In contrast, the oscillations period is only weakly affected by the highest, up to 14~T, in-plane oriented magnetic fields. We interpret this behavior as the interference oscillations in a helical one-dimensional edge channel due to a proximity with a superconductor.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا