Do you want to publish a course? Click here

Decoupling edge versus bulk conductance in the trivial regime of an InAs/GaSb double quantum well using Corbino ring geometry

384   0   0.0 ( 0 )
 Added by Minh Nguyen
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A Corbino ring geometry is utilized to analyze edge and bulk conductance of InAs/GaSb quantum well structures. We show that edge conductance exists in the trivial regime of this theoretically-predicted topological system with a temperature insensitive linear resistivity per unit length in the range of 2 kOhm/um. A resistor network model of the device is developed to decouple the edge conductance from the bulk conductance, providing a quantitative technique to further investigate the nature of this trivial edge conductance, conclusively identified here as being of n-type.



rate research

Read More

We present transport and scanning SQUID measurements on InAs/GaSb double quantum wells, a system predicted to be a two-dimensional topological insulator. Top and back gates allow independent control of density and band offset, allowing tuning from the trivial to the topological regime. In the trivial regime, bulk conductivity is quenched but transport persists along the edges, superficially resembling the predicted helical edge-channels in the topological regime. We characterize edge conduction in the trivial regime in a wide variety of sample geometries and measurement configurations, as a function of temperature, magnetic field, and edge length. Despite similarities to studies claiming measurements of helical edge channels, our characterization points to a non-topological origin for these observations.
We experimentally investigate transport through the side junction between a niobium superconductor and the mesa edge of a two-dimensional system, realized in an InAs/GaSb double quantum well with band inversion. We demonstrate, that different transport regimes can be achieved by variation of the mesa step. We observe anomalous behavior of Andreev reflection within a finite low-bias interval, which is invariant for both transport regimes. We connect this behavior with the transition from retro- (at low biases) to specular (at high ones) Andreev reflection channels in an InAs/GaSb double quantum well with band inversion.
We investigate charge transport through the junction between a niobium superconductor and the edge of a two-dimensional electron-hole bilayer, realized in an InAs/GaSb double quantum well. For the transparent interface with a superconductor, we demonstrate that the junction resistance is determined by the interlayer charge transfer near the interface. From an analysis of experimental $I-V$ curves we conclude that the proximity induced superconductivity efficiently couples electron and hole layers at low currents. The critical current demonstrates periodic dependence on the in-plane magnetic field, while it is monotonous for the field which is normal to the bilayer plane.
We present transport measurements on a lateral p-n junction in an inverted InAs/GaSb double quantum well at zero and nonzero perpendicular magnetic fields. At a zero magnetic field, the junction exhibits diodelike behavior in accordance with the presence of a hybridization gap. With an increasing magnetic field, we explore the quantum Hall regime where spin-polarized edge states with the same chirality are either reflected or transmitted at the junction, whereas those of opposite chirality undergo a mixing process, leading to full equilibration along the width of the junction independent of spin. These results lay the foundations for using p-n junctions in InAs/GaSb double quantum wells to probe the transition between the topological quantum spin Hall and quantum Hall states.
We study quantum point contacts in two-dimensional topological insulators by means of quantum transport simulations for InAs/GaSb heterostructures and HgTe/(Hg,Cd)Te quantum wells. In InAs/GaSb, the density of edge states shows an oscillatory decay as a function of the distance to the edge. This is in contrast to the behavior of the edge states in HgTe quantum wells, which decay into the bulk in a simple exponential manner. The difference between the two materials is brought about by spatial separation of electrons and holes in InAs/GaSb, which affects the magnitudes of the parameters describing the particle-hole asymmetry and the strength of intersubband coupling within the Bernevig-Hughes-Zhang model. We show that the character of the wave function decay impacts directly the dependence of the point contact conductance on the constriction width and the Fermi energy, which can be verified experimentally and serve to determine accurately the values of relevant parameters. In the case of InAs/GaSb heterostructures the conductance magnitude oscillates as a function of the constriction width following the oscillations of the edge state penetration, whereas in HgTe/(Hg,Cd)Te quantum wells a single switching from transmitting to reflecting contact is predicted.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا