Do you want to publish a course? Click here

Conductance oscillations at the interface between a superconductor and the helical edge channel in a narrow HgTe quantum well

176   0   0.0 ( 0 )
 Added by Eduard V. Deviatov
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally investigate electron transport through the interface between a superconductor and the edge of a two-dimensional electron system with band inversion. The interface is realized as a tunnel NbN side contact to a narrow 8~nm HgTe quantum well. It demonstrates a typical Andreev behavior with finite conductance within the superconducting gap. Surprisingly, the conductance is modulated by a number of equally-spaced oscillations. The oscillations are present only within the superconducting gap and at lowest, below 1~K, temperatures. The oscillations disappear completely in magnetic fields, normal to the two-dimensional electron system plane. In contrast, the oscillations period is only weakly affected by the highest, up to 14~T, in-plane oriented magnetic fields. We interpret this behavior as the interference oscillations in a helical one-dimensional edge channel due to a proximity with a superconductor.



rate research

Read More

We experimentally investigate spin-polarized electron transport between a permalloy ferromagnet and the edge of a two-dimensional electron system with band inversion, realized in a narrow, 8~nm wide HgTe quantum well. In zero magnetic field, we observe strong asymmetry of the edge potential distribution with respect to the ferromagnetic ground lead. This result indicates, that the helical edge channel, specific for the structures with band inversion even at the conductive bulk, is strongly coupled to the ferromagnetic side contact, possibly due to the effects of proximity magnetization. It allows selective and spin-sensitive contacting of helical edge states.
We investigate charge transport through the junction between a niobium superconductor and the edge of a two-dimensional electron-hole bilayer, realized in an InAs/GaSb double quantum well. For the transparent interface with a superconductor, we demonstrate that the junction resistance is determined by the interlayer charge transfer near the interface. From an analysis of experimental $I-V$ curves we conclude that the proximity induced superconductivity efficiently couples electron and hole layers at low currents. The critical current demonstrates periodic dependence on the in-plane magnetic field, while it is monotonous for the field which is normal to the bilayer plane.
We experimentally investigate spin-polarized electron transport between two ferromagnetic contacts, placed at the edge of a two-dimensional electron system with band inversion. The system is realized in a narrow (8~nm) HgTe quantum well, the ferromagnetic side contacts are formed from a pre-magnetized permalloy film. In zero magnetic field, we find a significant edge current contribution to the transport between two ferromagnetic contacts. We experimentally demonstrate that this transport is sensitive to the mutual orientation of the magnetization directions of two 200~$mu$m-spaced ferromagnetic leads. This is a direct experimental evidence on the spin-coherent edge transport over the macroscopic distances. Thus, the spin is extremely robust at the edge of a two-dimensional electron system with band inversion, confirming the helical spin-resolved nature of edge currents.
We propose a minimal effective two-dimensional Hamiltonian for HgTe/CdHgTe quantum wells (QWs) describing the side maxima of the first valence subband. By using the Hamiltonian, we explore the picture of helical edge states in tensile and compressively strained HgTe QWs. We show that both dispersion and probability density of the edge states can differ significantly from those predicted by the Bernevig-Hughes-Zhang (BHZ) model. Our results pave the way towards further theoretical investigations of HgTe-based quantum spin Hall insulators with direct and indirect band gaps beyond the BHZ model.
127 - Z. Qiu , K. Ando , K. Uchida 2013
A platinum (Pt)/yttrium iron garnet (YIG) bilayer system with a well-controlled interface has been developed; spin mixing conductance at the Pt/YIG interface has been studied. Crystal perfection at the interface is experimentally demonstrated to contribute to large spin mixing conductance. The spin mixing conductance is obtained to be $1.3times10^{18} rm{m^{-2}}$ at the well-controlled Pt/YIG interface, which is close to a theoretical prediction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا